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Abstract 

 

A Flexible Method for Protecting Marketing Data:  

An Application to Point-of-Sale Data 

We develop a flexible methodology to protect marketing data in the context of  a business ecosystem 

in which data providers seek to meet the information needs of  data users, but wish to deter invalid 

use of  the data by potential intruders. In this context we propose a Bayesian probability model that 

produces protected synthetic data. A key feature of  our proposed method is that the data provider 

can balance the trade-off  between information loss resulting from data protection and risk of  

disclosure to intruders. We apply our methodology to the problem facing a vendor of  retail point-of-

sale data whose customers use the data to estimate price elasticities and promotion effects. At the 

same time, the data provider wishes to protect the identities of  sample stores from possible 

intrusion. We define metrics to measure the average and maximum loss of  protection implied by a 

data protection method. We show that, by enabling the data provider to choose the degree of  

protection to infuse into the synthetic data, our method performs well relative to seven benchmark 

data protection methods, including the extant approach of  aggregating data across stores. 

 

Key words: Data Protection, Privacy, Statistical Disclosure Limitation, Risk-Return Tradeoff, Bayesian 

Statistics  
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1. Introduction 

 Businesses routinely share marketing data with their employees, suppliers, customers, 

regulators, as well as the general public. Widely known examples include data on customer 

purchasing histories, media viewership, and web browsing behaviors gathered by market research 

companies and sold to their clients; product sales ranks released by Amazon to its vendors and to 

the general public; movie viewing histories of  Netflix subscribers released to the general public in a 

contest to design a better movie recommendation engine; and the channel partnership between 

Walmart and Procter and Gamble based on information sharing in the supply chain (Grean and 

Shaw 2005). In all these cases the data provider stands to benefit by sharing the data, but also seeks 

to actively protect certain aspects of  the data from disclosure. This paper proposes a framework and 

statistical approach to help firms (vendors) share marketing data while limiting the risk of  disclosure. 

In particular, we address a Marketing Science Institute (2016) research priority and show how firms 

can trade off  privacy concerns against the commercial value of  their data. 

 To motivate the importance of  data protection and to provide context, we begin with a 

classic example of  widely used market research data. AC Nielsen, the largest marketing research 

company in the world, sells point-of-sale scanner data to manufacturers and retailers of  consumer 

packaged goods. The data are obtained from a sample of  retail stores, to each of  whom AC Nielsen 

provides a contractual assurance that their identities will not be revealed to data users. There are at 

least two important reasons for AC Nielsen to protect the identities of  sample stores and their sales 

volumes. The first reason is to prevent tampering with market research results (e.g., by artificially 

inflating or deflating sales in sample stores to skew volumes).1 The second reason is to prevent data 

users from taking strategic actions based on the identities of  stores, such as locating a new 

                                           
1 This concern is similar to the one faced by the New York Times (NYT) Bestseller List of books, which is based on a 
survey of a closely guarded set of retail booksellers. Despite the secrecy, several cases have been reported in the media of 
authors or their agents making “strategic purchases” of books at retail stores to artificially boost their own rankings. 
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competing store close to a high-performing retail store in the sample.  

 AC Nielsen currently protects the identities of  sample stores primarily through data 

aggregation. In particular, most AC Nielsen clients are not provided with store-level data, but only 

with data aggregated to a higher level, such as market-level data. Market-level sales data are linearly 

aggregated (i.e. summed) sales; in addition, volume-weighted average prices and promotions are 

provided across stores in the market. Bucklin and Gupta (1999, p. 261) analyzed  data from a survey 

of  academics and practitioners and concluded that “While Nielsen and IRI have store- and 

account-level data, third-party consultants such as MMA usually conduct their analysis on the 

market-level data to which they are given access.” This aggregation process has a dual effect. On 

one hand it raises the cost of  identifying sample stores sufficiently so that the data protection goal 

of  AC Nielsen is accomplished; on the other hand, it significantly reduces the commercial value of  

the data for users.  

 The goal of  manufacturers and retailers who buy AC Nielsen data is to optimize marketing 

decisions by using estimates of  important metrics such as price elasticities and promotion lift 

factors, derived from a sales response or marketing-mix model. Estimates of  price elasticities and 

promotion effects based on the aggregated data are subject to aggregation bias, which can be very 

large in magnitude (Christen et al. 1997). For instance, aggregation to the market-level typically leads 

to overstatement of  the effects of  promotional variables such as in-store displays and retailer feature 

advertising (Christen et al. 1997). Approaches to ameliorate aggregation bias in the price elasticities 

and promotion effects have been suggested (e.g. Link 1995, Tenn 2006) but the bias is difficult to 

eliminate. This tradeoff  between data protection and commercial value lies at the heart of  the 

problem that we study in this paper. 

 We use the AC Nielsen prototypical example to illustrate key elements of  business situations 

in which the need for protecting marketing data arises. In these situations, a “data provider” (for 
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example, AC Nielsen) obtains data from “data subjects” (retail stores) and provides these data to 

“data users” (consumer packaged goods manufacturers and retailers), but does not disclose certain 

aspects that we term “confidential data” (store identities). The goal of  data users is to benefit from 

the data (for example, by estimating price elasticities and promotional effects for business decisions). 

Typically, these benefits are derived from the use of  the data in a “data user’s model” (a sales 

response or marketing-mix model). Importantly, as noted earlier, the data user may derive additional 

benefit from learning the confidential data; we term such use “invalid use” (learning store identities 

and linking them to sales).  

 Often the attempt to make invalid use of  the data is performed by “data intruders” who may 

be third parties who have access to the data. In this paper we do not distinguish between invalid use 

by data users or by data intruders. The task facing the data provider is to use “data protection” 

methods that will permit valid use but deter or make difficult invalid use of  the data by users or 

intruders. A primary goal of  the present paper is to propose a data protection method that allows 

the data provider to choose a preferred data protection strategy after explicitly evaluating the 

tradeoff  between commercial value and data protection. 

In Figure 1 we use the AC Nielsen example to conceptualize a Marketing Data Privacy 

Ecosystem that identifies relationships among key players, their business goals, and the data 

protection imperatives that follow. An important aspect to emphasize is that data providers may be 

motivated to protect data not simply because of  legal or contractual obligations to data subjects, but 

also because preserving privacy may be a key pillar of  the data provider’s brand positioning. When 

this is the case, the cost of  invalid use may be very high because it damages trust in the data 

provider’s brand. 
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 Data protection situations that fit this ecosystem are very common in marketing research; 

consequently, the choice of  data protection method can have a major effect on decision-making by 

the data user. For instance, AC Nielsen and IRI collect data from household panels and provide 

them to their clients. IMS Health collects data from physician panels and provides data on prescriber 

behavior to pharmaceutical firms. It also collects prescription sales information from retail 

pharmacies to sell to clients. Another broad context in which data protection needs arise is when 

firms supply information to buyers of  their products or services to help them evaluate the product 

or service. For instance, Google provides data to advertisers on the click-through behavior of  

search-engine users in response to sponsored search advertising. Google chooses to not provide 

impression-level data to its clients, but instead aggregates the data to the daily level to increase 

privacy. As in our AC Nielsen example, this leads to potential aggregation bias in the estimated 

effects of  advertising, making it more difficult for advertisers to optimize their advertising spending 
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(Abhishek et al. 2015). 

  Firms currently choose from a wide spectrum of  data protection methods. At one extreme 

the firm can elect to accurately reveal highly disaggregated customer data (e.g., Netflix). At the other 

extreme the firm may destroy customer data for reasons of  privacy, either by choice or to comply 

with regulatory or contractual obligations, implicitly foregoing any potential gains from data sharing, 

as well as the opportunity to benefit in the future from analysis of  a complete historical dataset. In 

the middle of  the spectrum, aggregation is commonly used to mask the data, as is the case in the AC 

Nielsen and Google examples discussed previously. In all these cases the firm is implicitly making a 

tradeoff  between commercial value and data protection. 

 In this paper we seek to make several contributions to the marketing literature. Firstly, we 

conceptualize the need for data protection in the context of  a business ecosystem that is widely 

prevalent in marketing (Figure 1). A key distinction in this framework relative to the privacy 

literature in statistics and computer science is that we explicitly recognize the business goals of  the 

data user as reflected in the data user’s model, and incorporate these into the data provider’s model. 

By contrast, almost all the extant literature on data protection, which is outside marketing, does not 

explicitly specify the goals of  the data user (we discuss this point in detail in the upcoming literature 

review). This is in part because the literature on statistical disclosure has largely taken the perspective 

of  governmental agencies such as the US Census Bureau, who release data for a diffuse set of  users, 

typically the general public. 

 Secondly, we contribute to the statistical disclosure literature by proposing a new approach 

to incorporate the data provider’s data protection preferences into a Bayesian model through a prior 

distribution controlled by a single parameter (in this paper, we characterize the “prior” as a privacy-

preserving prior distribution found in Schneider and Abowd 2015). In particular, we include a 

parameter kappa () in the prior distribution that can be changed by the data provider to manage the 



8 

 

tradeoff  between information loss to the data user and loss of  protection from invalid use. The 

prior distribution is then used to generate synthetic but representative data from a protected 

posterior predictive distribution. We propose a rigorous methodology for data protection within a 

single formal probability model which is discussed in detail subsequently (see Figure 2). This 

modeling strategy provides a key managerial benefit: the model allows the data provider to explicitly 

manage the tradeoff  between data protection and commercial value given the data provider’s risk-

return preference. This is in contrast with standard approaches such as top-coding, swapping, 

rounding, and aggregation, which may be considered ad hoc in this regard (these methods are 

discussed later.). 

 Finally, and perhaps most importantly, we propose new measures of  identification risk 

inherent in a dataset – Average Loss of  Protection (ALP) and Maximum Loss of  Protection (MLP) 

– and explore the theoretical and empirical relationships of  these to standard measures -- the Gini 

Coefficient and Entropy.  MLP measures the highest probability of  store identification across stores, 

and hence can be interpreted as the minimum level of  privacy across stores.  It is associated with the 

probability of  just one store being identified, which may result in large losses due to, for instance, a 

lawsuit or a decrease in trust for the data provider.  Note that MLP is a viable risk management 

measure for comparing minimum privacy levels across different data protection approaches applied 

to a dataset.   

 We illustrate the proposed methodology using AC Nielsen point-of-sale data for brands of  

a consumer packaged good. We find that the parameter  assists the data provider in choosing an 

appropriate prior distribution. We also find that our method performs well compared to a set of  

seven benchmark data protection methods, including no protection and the aggregation approach 

used by AC Nielsen.  The main limitation of  the proposed identification disclosure risk model in 

this empirical application is that the estimated probabilities of  an observation belonging to stores in 
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a given time period do not sum to 100%. We discuss the implications of  not having this constraint 

in Section 2.4.1.  

1.1 Privacy Literature  

The academic literature in marketing has explored a few themes in data privacy. An 

important theme is the relationship between privacy and targetability of  marketing actions. Goldfarb 

and Tucker (2011), for instance, explores the impact on advertising effectiveness of  privacy 

regulations in Europe that restrict the collection and use of  customer data. Similarly, Conitzer et al. 

(2011) considers the impacts of  a customer’s choice of  maintaining anonymity on firms’ ability to 

price discriminate and on consumer welfare. The use of  aggregation to mask sensitive consumer 

information has been recognized by, for instance, Steenburgh et al. (2003) who propose an approach 

to use “massively categorical” variables such as zip codes in choice models. As the number of  

categories increases, the number of  consumers in each category decreases, thereby increasing the 

risk of  disclosure of  individual data. De Jong, Pieters and Fox (2010) use randomized response 

designs in survey data collection to protect respondents’ identities while allowing for unbiased 

aggregate inferences. Our approach is fundamentally different from this stream of  research because 

we focus on data protection ex post not ex ante. 

Since much of  the work on data protection is outside the marketing literature, we focus on 

the relevant literature in statistics. Standard data protection methods in use at a variety of  agencies 

include aggregating, swapping, rounding, and top-coding (we define these methods in Section 3 and 

Table 1 subsequently).  The goal of  data protection is usually to limit disclosure risk at an 

observational level (e.g., individual) while preserving as much of  the information as possible. Some 

examples of  disclosure risk measures in use include the number of  population uniques in a dataset 

or the probability of  identification of  a single observation. Reiter (2005) used probabilities of  

identification as the disclosure risk measure and applied standard data protection methods to 
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unprotected data. A later paper (Reiter 2010) found that aggregation was more effective than 

swapping. However, standard data protection methods are so extreme that for many analyses, 

protected data have limited utility. Little (1993) recognizes the disadvantages of  simply providing the 

sufficient statistics needed for particular analyses (i.e., aggregation). These include “lack of  flexibility 

in the choice of  variables to be analyzed, and the relative inability to do exploratory analysis and 

model-checking.”  

In response to the limitations and ad hoc nature of  standard data protection methods, the 

data privacy community shifted to the use of  synthetic data, which are simulated data generated 

from a probability distribution. Synthetic data provide an important advantage: they can allow 

theoretical guarantees of  privacy. The first theoretical data protection model using synthetic data was 

a Dirichlet-Multinomial model which was applied to count data from the U.S. Census Bureau 

(Machanavajjhala et al. 2008). However, due to the strong theoretical requirements for privacy, the 

protection “rendered the synthetic data useless” (Machanavajjhala et al. 2008, p.1). Although this and 

subsequent papers (e.g., Charest 2011) have advanced the theoretical knowledge of  synthetic data 

protection methods, from a practical point of  view their synthetic data were either of  little use or 

were too highly aggregated (e.g., into a single count). 

 Part of  the problem is that these applications do not use covariates in the data protection 

model. And covariates allow the synthetic dependent variable to vary across observations, which 

improves utility for the data user. Recent literature has sought to advance data protection methods 

by extending them to analyze richer data with covariates. Abowd, Schneider and Vilhuber (2013) 

used covariates in a regression model for U.S. Census Bureau data, but found that the strict 

theoretical guarantees of  privacy were still too strong to be met in a multiple regression model, and 

only succeeded in a simple regression model with one covariate. Those authors suggested the use of  

more relaxed measures of  privacy to increase data utility.  
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Recent data protection models have relaxed theoretical guarantees of  privacy in order to 

generate synthetic data for more general real world regression problems that include several 

covariates. For instance, Hu, Reiter, and Wang (2014) generated synthetic data with a Dirichlet-

Multinomial regression model with 14 categorical covariates. More recently, Schneider and Abowd 

(2015) developed a privacy-preserving prior distribution from the data provider’s perspective for use 

with a zero-inflated regression model. Their goal was to provide an alternative approach to the 

protection method used by the US Census Bureau that was based on suppression of  zeros. They 

found that synthetic data released from their models had a similar fit to simpler models; however, 

importantly, their models allowed the provider to achieve a greater level of  privacy. The current 

paper differs from Schneider and Abowd (2015) most notably in having a different goal – that of  

developing a data provider’s model that is consistent with the Data Privacy Marketing Ecosystem in 

Figure 1. In other words, our method generates protected data that are useful for specified data 

users. The model in the current paper is also different in terms of  protecting the estimated 

parameters of  continuous variables (like price) by adjusting the multivariate Normal prior and 

parsimoniously controlling the entire protection mechanism by using a single parameter . 

In sum, although recent work has advanced the use of  synthetic data, nearly all the work has 

been done from the perspective of  a governmental agency which is required to both release and 

protect data for a diffuse group (the public). These data protection methods do not allow the 

decision maker to balance potentially conflicting goals in a decision-theoretic framework. For 

example, the firm that sells data needs to balance the incremental profits from more accurate data 

disclosure and the potential costs of  a data breach (including hidden costs such as those resulting 

from a loss in consumer trust in the firm).  

In sum, the literature review indicates that there is a strong unmet need for a synthetic data 

model that incorporates three parties with different goals:  the data provider as a commercial 
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supplier who protects data with a data protection method, the data user as a customer, and the 

potential data intruder. As discussed, such a framework is especially needed in marketing 

applications. The present paper proposes one such framework. Philosophically we agree with Reiter 

(2010) who notes that “synthetic data reflect only those relationships included in the data generation 

models.” Thus, we gear our synthetic data and data protection method toward the business goal of  

enabling valid use by the data user.  

One notable aspect of  our paper is that the Marketing Data Privacy Ecosystem focuses 

attention on the data user’s need to make important marketing decisions using the data. These needs 

then drive the development of  the data protection method by the data provider. Prior research 

(Reiter 2005; Machanavajalla et al. 2008; Charest 2010; Abowd, Schneider and Vilhuber 2013; Hu, 

Reiter, and Wang 2014; Reiter, Wang, and Zhang 2014; Schneider and Abowd 2015) used data from 

the U.S. Census Bureau, the Bureau of  Justice Statistics, or simulation. These choices obviated the 

need to incorporate a customer of  the synthetic data – the data user – into the data protection 

strategy. By contrast, in our paper we explicitly model all three players in the Marketing Ecosystem: 

the data provider, the data user, and the potential intruder.  

 The rest of  the paper is organized as follows. In Section 2 we discuss the data user’s model 

and a model to quantify the risk of  disclosure, and propose an algorithm for generating synthetic 

protected data. In Section 3 we provide an empirical application of  the algorithm to a specific data 

user model and discuss results, including a comparison with benchmark models. Section 4 discusses 

conclusions and proposes directions for future research. 

2. Models Used by the Data User and Data Provider  

We believe it is useful to illustrate the proposed methodology in a specific model-based 

application context. In Section 2.1 we return to the example of  the data provider, AC Nielsen, 

sharing point-of-sale data with data users and present a well-known market-response model that is 
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used by its data users to estimate brand price elasticities and promotion effects. In Section 2.2, we 

introduce a model to predict the risk of  disclosure of  the identities of  stores who provided the data 

to AC Nielsen. In Section 2.3 we propose a data protection method for use by data providers such 

as AC Nielsen. In Section 2.4 we propose several new criteria to measure the performance of  any 

data protection method. We also illustrate (in 2.4.1) the application of  the identification disclosure 

model by the data provider, and discuss how an intruder may use additional data to predict store 

identities.   

2.1 Data User’s Model 

We illustrate our method using  SCAN*PRO (Leeflang et al. 2013), a market-response model 

that is widely used by consumer goods manufacturers and by AC Nielsen. The goal of  the model is 

to quantify the short-term effects on a brand’s unit sales of  such retailers’ activities as in-store prices, 

special displays, and feature advertising. Van Heerde et al. (2002) reported that as of  the date of  

their article, SCAN*PRO and its variants had already been used in over 3,000 different commercial 

applications.  

The fundamental model specification in SCAN*PRO involves a multiplicative or log-log 

relationship between a brand’s unit sales volume, and own and competitive brand prices and 

promotions. The model is specified at the store-level and is estimated using weekly data. In order to 

maintain sharp focus on our data protection method we use a version of  the full SCAN*PRO 

model. The model is estimated separately by brand, and includes fixed store effects, an own-price 

effect, and three own-promotion effects. The three own-promotion effects are own-display only, 

own-feature only, and both own-display and own-feature2. Hence the market response model is 

                                           
2 We omit competitive price and promotion effects to maintain parsimony of specification for this application. Inclusion 
of competitive effects would require an additional four parameters per competing product in the model for each brand. 
As we discuss in the results section (see Table 4), model fit does not suffer much due to this omission since the average 
(across brands) adjusted R^2 of fitted models exceeds 0.95.  
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𝑆𝑖𝑗𝑡 = 𝛼𝑖𝑗𝑃
𝑖𝑗𝑡

𝛽𝑗 (∏ 𝛾
𝑙𝑗

𝐷𝑙𝑖𝑗𝑡

𝐿

𝑙=1

) 𝑒𝜖𝑖𝑗𝑡 , 𝑖 = 1, … , 𝑛; 𝑡 = 1, … , 𝑇 ，                                (1) 

where 𝑆 represents sales volume, P is price, and the Ds represent indicator variables for three kinds 

of  promotions indexed by 𝑙: Display Only, Feature only, and both Display and Feature. In the model 

𝑖 indexes stores, 𝑗 indexes brands, and 𝑡 indexes weeks. As is well known, in this multiplicative model 

the own-price effects 𝛽𝑗 represent own-price elasticities, the 𝛾𝑙𝑗 represent own-promotion effects 

and the 𝜖𝑖𝑗𝑡 represent the error terms. The promotion effects are interpretable as promotion 

multipliers, or the factors by which baseline sales increase under promotion. We assume that the 

primary goal of  the data user is to obtain accurate estimates of  own-price elasticities and own-

promotion effects; these are critical quantities both for characterizing product markets as well as for 

determining optimal mark-ups or conducting what-if  simulations. 

Although AC Nielsen collects weekly store-level data from a random sample of  stores, it is 

reluctant to release store-level data to data users. As discussed previously, this is in large part because 

of  the concern that data users may be able to predict or guess the identities of  sample stores--- 

information which AC Nielsen is contractually bound to protect from data users. In addition, the 

identity of  a sample store is more likely to be discovered and more damaging when the exact store-

level sales quantities are known.  To fulfill its contractual obligations, AC Nielsen has typically 

aggregated the store-level data to market levels before release to users, thus protecting the store 

identities and the store-level sales quantities.   

2.2 Model for Identification Disclosure Risk 

We assume that the key risk that the data provider wishes to guard against is the risk of  

disclosing the confidential information, namely, the true store identities (e.g., “this weekly point-of-

sale observation is from the Kroger on Thompson Road in Indianapolis”) to a data user or potential 

data intruder. In order to quantify the predictability of  the identification disclosure risk for various 
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released (protected) data sets relative to the original true data, we specify the following multinomial 

logit model, where the response variable is the store ID and the predictor variables are ln(sales), 

ln(price), and promotion indicators, for each store 𝑖, week 𝑡, and brand j.  

The multinomial logit model is 

ln (
𝑃(𝑌̂𝑖𝑡 = 𝐼𝐷𝑖′|𝑺𝑖𝑡, 𝑷𝑖𝑡, 𝑫𝑖𝑡)

𝑃(𝑌̂𝑖𝑡 = 𝐼𝐷1|𝑺𝑖𝑡, 𝑷𝑖𝑡, 𝑫𝑖𝑡)
) = ∑ 𝑎𝑖′𝑗 ln 𝑆𝑖𝑗𝑡

𝐽

𝑗=1

+ ∑ 𝑏𝑖′𝑗 ln 𝑃𝑖𝑗𝑡

𝐽

𝑗=1

+ ∑ ∑ 𝑐𝑙𝑖′𝑗𝐷𝑙𝑖𝑗𝑡

𝐿

𝑙=1

𝐽

𝑗=1

,    (2) 

𝑖, = 1, … , 𝑛; 𝑖′ = 2, … , 𝑛;  𝑡 = 1, … , 𝑇 ,  

where 𝑌𝑖𝑡 is a random variable that represents store ID taking values {𝐼𝐷1, … , 𝐼𝐷𝑛}, 𝐼𝐷1 is the store 

𝐼𝐷 of  Store 1, which serves as a reference or base alternative in the multinomial logit model, 

and  𝑃(𝑌̂𝑖𝑡 = 𝐼𝐷𝑖′| 𝑺𝑖𝑡, 𝑷𝑖𝑡, 𝑫𝑖𝑡) is the fitted probability in week 𝑡 that Store 𝑖 has 𝐼𝐷 equal to 𝐼𝐷𝑖′ , 

𝑖′ = 2, … , 𝑛, given sales, prices and promotions of  all brands3.  

Note that the data provider has all the information required to estimate this model, including 

the store identities, true and protected sales data, and prices and promotions. Evaluating the relative 

identification disclosure risk of  the true data versus any kind of  protected data (i.e., the probability 

that the store is the Kroger on Thompson Road in Indianapolis, given the prices, promotions and 

true sales of  Tide 147 ounces, versus the probability that the store is the Kroger on Thompson 

Road in Indianapolis, given the prices, promotions and synthetic sales of  Tide 147 ounces) is 

equivalent to measuring the predictive abilities of  the multinomial logit models built on true data 

versus the protected data. To measure predictive ability we use leave-one (week)-out cross validation, 

where the risk of  store identification is measured using the predicted probability of  store 

identification in hold-out observations. For example, the potential data intruder might say “based on 

                                           
3 Note that the data used in this multinomial logit model are a different configuration of the same data that are employed 

in the data user’s model (1), plus store identities. The dataset has 𝑛𝑇 observations. The response variable 𝑌𝑖𝑡  is the ID of 

Store 𝑖 in week 𝑡, and the predictors are ln prices, promotions and ln sales of all brands in store i in week t. Thus, we 

have 5 × 𝐽 predictors in this model. 



16 

 

my available data, I estimate a 25% probability that this observation is from the Kroger on 

Thompson Road in Indianapolis.” We present further details in Section 2.4.1 including the kinds of  

data that potential intruders may have access to in real life.  

2.3 Proposed Data Protection Model 

We propose a Bayesian random effects model for protecting data through the use of  a 

flexible prior distribution that reflects the data provider's risk-return preferences. To begin we 

discuss some pertinent questions about the data provider’s process of  developing the protected data. 

Firstly, the data provider’s goal is to release useful yet privacy-protected data to data users. As 

discussed, in our analysis the data provider assesses the identity disclosure risks by measuring the 

predictability of  store identities based on various forms of  protected data compared to the true data.  

 Secondly, which variables in the data gathered from stores should not be released, and hence 

protected by transformation into synthetic data? We use the decision criterion that variables that 

have the most power to predict store IDs in the training data should be protected. As discussed later 

in our empirical application, we choose to protect sales quantities but not price or promotion data.  

We chose these variables based on analysis that is reported in detail in Appendix C, and is described 

here conceptually. In our available sample of  AC Nielsen data, we use the multinomial logit model 

specified in Section 2.2 to compute the ability of  variables such as prices, promotions, and sales 

volumes, to predict store IDs. Our analysis shows that using prices alone leads to an average loss of  

protection of  0.062, while using sales volumes alone leads to a much higher average loss of  

protection of  0.511. (See Equation (7) and the related discussion for the definition of  Loss of  

Protection.) Consequently, we chose to protect sales quantities in our data protection method. Why 

do we not protect the prices and promotions as well? There are two reasons over and above their 

limited ability to predict store IDs. One, prices and promotions provide valuable information to data 

users, such as the distribution of  retail prices of  own and competing products, and protection would 
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distort this information. Two, unlike brand sales volumes, prices and promotions are publicly 

available information that can be observed in the store. Therefore, a determined intruder could 

obtain such data with sufficient effort and hence these data are less necessary to protect. While price 

and promotion information can also be protected, this would add greater complexity to the models, 

and we discuss this idea as a future research opportunity in Section 4. 

Third, in developing the protected data, we propose the use of  a random effects model 

instead of  a model-free noise approach (e.g., simply adding a random number to sales). We 

implement the model-free noise approach as a benchmark method for comparison. In a random 

effects model, the distribution of  the dependent variable, i.e. sales quantities, can be altered with 

little difficulty to incorporate non-normally distributed data, thus allowing modeling flexibility across 

types of  data. Additionally, and perhaps most importantly, it is common for estimates of  random 

effects (e.g. store effects) to rely on only a few observations each. And the privacy-preserving prior 

distribution naturally protects the estimates of  the random effects from discovery by an intruder by 

scaling the estimates of  the random effects toward zero, or no information.4 

Figure 2 summarizes the process by which the data provider generates protected data to 

release to the data user. The protection mechanism we propose shrinks the values of  the estimated 

random effects and fixed effects toward zero (i.e., the limiting case of  no information) through the 

use of  a privacy-preserving prior distribution on the variances of  the random effects and fixed 

effects. This is managerially important because the data provider prevents the data intruder from 

knowing or approximating the true arithmetic mean of  q observations in a small group. Instead, the 

protection mechanism scales the estimated values of  the q observations toward their greater group 

means (e.g., overall intercept of  all observations). Our proposed method is nonstandard because it 

                                           
4 Previous research (Bleninger, Drechsler, and Ronning 2011) has shown that a data intruder can strategically uncover 
sensitive data (e.g., sales quantities of specific observations) when the data protection method is to simply add noise. 



18 

 

first protects the random and fixed effects and then adds noise centered at the protected deviations. 

After controlling for all variables and shrinking the estimates of  the random and fixed effects toward 

zero, we generate the synthetic sales quantities.  

Figure 2: Data Provider’s Process for Generating Synthetic Data for Release to the Data 
User 

 

 

We describe the base modeling setup and the likelihood in Section 2.3.1. A description of  

our flexible protective prior distribution is given in Section 2.3.2.  Computational details for 

generating synthetic data are provided in Section 2.3.3.  

2.3.1   Base Model 

We observe a response variable, sales 𝑆𝑖𝑗𝑡 for store 𝑖 = 1, … , 𝑛, brand 𝑗 = 1, … , 𝐽, time 𝑡 =

1, … , 𝑇. Additionally, price, 𝑃𝑖𝑗𝑡 , and promotion indicators 𝐷𝑙𝑖𝑗𝑡 are  covariates that affect the 

response. Based on Equation (1), for each brand j, we model ln 𝑆𝑖𝑗𝑡 using a random effects model: 

ln 𝑆𝑖𝑗𝑡 = 𝜇𝑗 + 𝑢𝑖𝑗 + 𝛽𝑗 ln 𝑃𝑖𝑗𝑡 + ∑(ln 𝛾𝑙𝑗)

𝐿

𝑙=1

𝐷𝑙𝑖𝑗𝑡 + 𝜖𝑖𝑗𝑡 ,                                     (3) 

where 𝜇𝑗 is the overall intercept of  the brand-specific model for brand j, 𝑢𝑖𝑗 is the random (store) 
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effect that is assumed to be normally distributed with zero mean and constant variance 𝜎𝑢
2, 𝛽𝑗 and 

ln (𝛾𝑙𝑗) are the fixed effects of  price and promotions respectively, and 𝜖𝑖𝑗𝑡 is the observation-

specific error term which is normally distributed with constant variance, 𝜏𝑗
2.  

 Note that model (3) is brand-specific, meaning that the model is fitted separately for each 

brand 𝑗. For simplicity of  notation, we omit the subscript 𝑗 in the rest of  Section 2.3 unless 

otherwise indicated. A natural way to estimate the random effects model is through Bayesian 

modeling with conjugate priors. The Bayesian approach to generate protected (synthetic) data 

through a posterior predictive distribution can be traced back to Rubin (1993).  

For the prior distribution of  all model parameters in (3), the overall intercept term 𝜇 is 

assumed to follow a normal distribution with zero mean and a large constant variance 𝐾2 so that the 

prior is diffuse. The variance of  the random effect, 𝜎𝑢
2, is assumed to be distributed according to an 

Inverse-Gamma distribution. The fixed effects vector  (𝛽, ln 𝜸) is assumed to be jointly distributed 

as multivariate normal with a mean vector of  zeros and diagonal covariance matrix Σ𝑏. In effect, we 

assume each of  the fixed effects, (𝛽, ln 𝜸), has the same prior distribution, that is, independent 

normal with zero mean and variance 𝜎𝑏
25. The variance of  model error 𝜏2 is assumed to follow an 

Inverse-Gamma distribution with fixed shape and scale parameters.  

Formally, we have 𝜇~N(0, 𝐾2); 𝜏2 ~ IG(𝑎0, 𝑏0); 𝜎𝑢
2~IG(

𝜈0

2
,

𝑉0

2
); (𝛽, ln 𝛾)~MVN(0, 𝜎𝑏

2𝐈). 

Among the hyper parameters (𝐾2, 𝑎0, 𝑏0, 𝑉0, 𝜈0, 𝜎𝑏
2), 𝐾 is set to be a large positive number, 𝑎0 and 

𝑏0 are fixed positive numbers, and 𝑉0 and 𝜈0 are functions of  a single new protection parameter that 

we will elaborate on further in Section 2.3.2. To implement the random effects model (3), we use 

                                           

5 When the covariance matrix Σ𝑏takes a general form, it is not immediately obvious how to incorporate the protection 

parameter even though the full conditionals can still be derived analytically. We leave this extension as a future research 
opportunity.  
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freely available software, an R package MCMCglmm (Hadfield 2010). Details of  the specification of  

hyper-parameters are discussed next. 

2.3.2  Flexible Prior Distribution 

The random effects model can be interpreted as a “mean model” (McCulloch and Searle 

2001). Thus, posterior samples of  a function of  the unprotected parameters, 𝑢𝑖 + 𝛽 ln 𝑃𝑖𝑡 +

∑ (ln 𝛾𝑙)𝐷𝑙𝑖𝑡
𝐿
𝑙=1 , represent unprotected “deviations” from the intercept of  all observations, 𝜇. These 

deviations are linear combinations of  the data provider’s continuous and categorical variables and 

the estimated coefficients (which are conditional on the original unprotected data). Since posterior 

samples of  the linear predictor 𝑢𝑖 + 𝛽 ln 𝑃𝑖𝑡 + ∑ (ln 𝛾𝑙)𝐷𝑙𝑖𝑡
𝐿
𝑙=1  can be predictive of  the identity of  

store i, they require protection.  

To achieve data protection, the flexible prior distribution takes information away from the 

unprotected deviations by tuning the hyper-parameters of  the prior on the variance components. It 

scales the unprotected deviations toward no information, as a mechanism for data protection. The 

priors on the variable-specific fixed effects and random effects shrink their posterior estimates 

toward zero through an adjustable protection parameter. This is motivated by the fact that the 

Bayesian estimator with an informative prior is a shrinkage estimator. 

To see how the protection parameter controls the protection level, we start from our prior 

distributions of  fixed effects and the variance of  the random effect. Specifically, we introduce a 

single protection tuning parameter к that is defined as the inverse of  the prior variance of  the fixed 

effect (𝛽, ln 𝜸). That is, 𝜅 ≔
1

𝜎𝑏
2 , where the fixed effect vector has prior distribution 

(𝛽, ln 𝜸)~MVN(𝟎, 𝜎𝑏
2𝐈). This is a conjugate prior; hence we can derive the conditional posterior 

mean and variance of  (𝛽, ln 𝜸) as follows 

𝐴𝑏 = (𝑿𝑻𝑿 + 𝜅𝜏2𝐈)−1𝑿𝑻(ln 𝑺 − 𝜇𝟏𝑛𝑇 − 𝒁𝒖);     𝐵𝑏 = 𝜏2(𝑿𝑻𝑿 + 𝜅𝜏2𝐈)−1.                (4) 
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where, for each brand, using matrix notation, 𝑿 = [ln 𝑷 𝑫1 … 𝑫𝐿], ln 𝑺 is an 𝑛𝑇 dimensional 

response vector, 𝑿 is an 𝑛𝑇 × (1 + 𝐿) dimensional covariates matrix for brand 𝑗, 𝒖 is an 𝑛 

dimensional random effect vector, and 𝒁 is an 𝑛𝑇 × 𝑛 dimensional indicator matrix for store 𝑖 such 

that 𝒁𝒖 = [𝑢1, … , 𝑢1, … , 𝑢𝑖 , … , 𝑢𝑖 , … , 𝑢𝑛, … , 𝑢𝑛] is a 𝑛𝑇 dimensional vector. 

We illustrate the role of  𝜅 in generating synthetic data through the posterior form (4). Note 

that by using (4) we can shrink the fixed-effect estimates of  (𝛽, ln 𝜸) toward 0 by increasing the 

parameter 𝜅. At the other extreme, when 𝜅 tends to zero, or equivalently the prior variance 𝜎𝑏
2 goes 

to infinity, we obtain a diffuse prior, in which case (4) becomes equivalent to the ordinary least 

squares estimator.  

Hence the single tuning parameter 𝜅 can capture the preference of  the data provide with 

regard to trading off  data protection (privacy) versus information loss. A smaller value of  𝜅 

(equivalently, a larger value of  hyper-parameter 𝜎𝑏
2) results in weaker protection. A larger value of  𝜅 

(equivalently, a smaller value of  the hyper-parameter 𝜎𝑏
2) results in stronger protection. Hence we 

term 𝜅 the data privacy protection parameter and each value of  𝜅 corresponds to a particular 

implicit tradeoff  between information loss and privacy. 

The conjugate prior distribution of  the variance of  the random effect is an inverse-Gamma 

distribution 𝜎𝑢
2~ IG (

𝜈0

2
,

𝑉0

2
) with mean 

𝑉0

𝜈0−2
 and variance 

2𝑉0
2

(𝜈0−2)2(𝜈0−4)
. The conditional posterior 

of  𝜎𝑢
2 is 𝜎̃𝑢

2|𝒖 ~ IG (
𝑛+𝜈0

2
,

𝒖′𝒖+𝑉0

2
).  To incorporate the privacy protection parameter 𝜅, we set 𝑉0 =

1

10𝜅
 and 𝜈0 = 100𝜅, which makes the mean arbitrarily close to zero as 𝜅 increases. With this 

specification of  hyper-parameters, a larger value of  𝜅 is equivalent to stronger informative priors for 

both (𝛽, ln 𝜸) and 𝜎𝑢
2. Since the means of  (𝛽, ln 𝜸) and 𝜎𝑢

2 are 0 and  
𝑉0

𝜈0−2
, respectively, a stronger 

informative prior shrinks the posteriors toward their respective means. 
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Note that one can specify different forms of  𝑉0 and 𝜈0 to incorporate 𝜅. Generally, a 

stronger protection corresponds to a smaller value of  𝑉0 and a larger value of  𝜈0 such that both the 

mean and variance of  𝜎̃𝑢
2 tend to 0, and equivalently the posterior samples of  the random effect, 𝑢𝑖 , 

scale toward zero. The full conditionals for the other model parameters can be easily derived 

analytically. We present details in Appendix B. 

2.3.3Protected Data for Release to Data User  

The proposed data protection method generates protected synthetic values of  ln 𝑆𝑖𝑡 for valid 

use by data users. These synthetic values, ln 𝑆̃𝑖𝑡, are generated by sampling from the protected 

posterior predictive distribution, which contains the protected model parameters, (𝛽, ln 𝜸̃) and  𝒖̃. 

To do this, we first run the MCMC with a set number of  iterations as a burn-in. Then, for the 

remaining iterations, 𝑚 = 1, … , 𝑀, all posterior samples of  the protected model parameters are 

saved. After verifying convergence of  the posterior samples of  all parameters, for each iteration 𝑚  

and each observation 𝑖𝑡, the protected deviation, 𝑢̃𝑖 + 𝛽 ̃ ln 𝑃𝑖𝑡 + ∑ (ln 𝛾̃𝑙)
𝐿
𝑙=1 𝐷𝑙𝑖𝑡, is 

calculated. Then, a disturbance term 𝜖𝑖𝑡 is sampled from a normal distribution with mean zero and 

variance 𝜏̃2, the posterior sample of  residual variance. The sum of  the protected deviation and the 

disturbance results in a single protected synthetic value. Together, for each brand j, the protected 

deviation, disturbance, and associated intercepts and covariates determine the protected posterior 

predictive distribution for each observation 𝑖𝑡, 

𝐹𝑖𝑡
𝑝(𝜅) = 𝑝(ln 𝑆̃𝑖𝑡 |𝑺, 𝑷, 𝑫, 𝜅, 𝑎0, 𝑏0, 𝐾) = ∫ 𝑝(ln 𝑆̃𝑖𝑡 |𝜣; ln 𝑃𝑖𝑡 , 𝑫𝑖𝑡) × 𝑝(𝜣|𝜣𝐻, 𝑺, 𝑷, 𝑫)𝑑𝜣

𝜣

, (5) 

where 𝜣 = (𝜇, 𝛽, ln 𝜸 , 𝒖, 𝜎𝑢 
2 , 𝜏 

2) is the vector of  model parameters, and 𝜣𝑯 is the vector of  hyper 

parameters for priors. 

This process can be repeated for a desired number of  protected synthetic vectors for all 
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brands, ln 𝑺̃, of  length 𝑛 × 𝐽 × 𝑇. We suggest that the data provider releases only one vector of  

synthetic data to the data user so that it can reduce the chance of  protected model parameters being 

subject to invalid use. For a detailed discussion see Reiter, Wang, and Zhang (2014) who found that 

multiple releases of  synthetic data are more informative of  the confidential data. In this regard note 

that multiple releases of  synthetic data for the same time period are  similar to releasing all the 

parameters of  a model and disclosing the entire posterior distribution. 

2.4 Criteria to Measure Performance of  Data Protection Method   

As noted, all data protection methods imply a tradeoff  between two criteria: identity 

disclosure risk and information loss. This tradeoff  can be analyzed using a Risk-Utility curve 

(Duncan et al. 2001) which represents the natural tradeoff  between data protection and the utility of  

valid use.  We discuss these two criteria in detail next. 

2.4.1  Measures of  Identification Disclosure Risk  

In order to evaluate the identification disclosure risk of  the protected data versus the true 

data, we adopt a leave-one (week)-out cross validation approach. Figure 3 gives a flow chart that 

describes the steps to compute measures of  identification disclosure risk for various released data 

sets as well as for releasing the true data. 
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Figure 3: Leave-One (Week)-Out Cross Validation Process for True Data and Various 
Released (Protected) Data 

 
 

Specifically, for each week 𝑘, 𝑘 = 1, … , 𝑇, a multinomial logit model (2) is estimated using 

(T-1) weeks of  available data 𝑨 = {𝑌𝑖𝑡, 𝑺̃𝒊𝒕, 𝑷𝒊𝒕, 𝑫𝒊𝒕},  𝑖 = 1, … , 𝑛  stores and 𝑡 = 1, … (−𝑘), … , 𝑇 

weeks. 𝑌𝑖𝑡 is the true store ID of  Store i in week t, 𝑺̃𝒊𝒕 represents the J-vector of  protected sales 

(using the proposed method or any benchmark method), 𝑷𝒊𝒕 is the J-vector of  prices, and 𝑫𝒊𝒕 is the 

 
 Start 

Leave out kth week observations, 
k = 1, …, T, and build a 

Multinomial Logit Model using 
the remaining (T-1) weeks of  

data 

Data provider has all 
observations with sales (true 

or protected), prices, 
promotions and store IDs 

Predict Store ID probability for each 
store i, i = 1, ….,n for held-out week 
k. Retain these predicted probabilities 

Update week k = k+1  

Is k = T? 

No 

Yes 

Compute mean Store ID probabilities for 
each store, across weeks. Use these values 

to compute 𝐿𝑃𝑖 , i = 1,…,n  

Obtain summary measures from distribution 

of  𝐿𝑃𝑖 : MLP and ALP 



25 

 

(L*J) vector of  promotions. Here (−𝑘) indicates that information for week 𝑘 is not used for 

estimating the multinomial logit model (2). The probabilities 𝑃(𝑌̂𝑖𝑘 = 𝐼𝐷𝑖′) of  the left-out kth-week 

store ID are then calculated for the fitted model (2) using the following explanatory variables 

{𝑺̃𝒊𝒌, 𝑷𝒊𝒌, 𝑫𝒊𝒌}, 𝑖 = 1, … , 𝑛 . For the special case in which the identity disclosure risk of  true data is 

evaluated, the true sales 𝑺𝒊𝒕 are used.  

Note that in our particular empirical application (discussed in Section 3), for each held-out 

week we obtain an 𝑛 × 𝑛 predicted conditional probability matrix, which is calculated by plugging in 

values of  covariates (sales, prices, and promotions) into the estimated multinomial logit model 

(2).  In this case, the predictive model has the limitation that it does not incorporate the information 

that the hold-out sample contains exactly n distinct masked entities, and there are n distinct entities 

in the training sample. In other words, the column sum of  the probability matrix, i.e., ∑ 𝑃𝑛
𝑖 (𝑌̂𝑖𝑘 =

𝐼𝐷𝑖′), is not guaranteed to be 1. In practice, however, in the data multiple records for a brand in a 

given period could be from the same store depending on, for instance, how SKUs are aggregated. 

Not imposing the constraint implies that there are measurement errors associated with sales so that 

multiple samples of  the same store for the same period may result in different sales measures. We 

would like to emphasize that frequently in practice, the number of  stores whose identity is to be 

predicted is very likely to be smaller than the number of  stores used in the training sample. 

Therefore, the constraint should not be imposed in general. Despite this limitation of  the predictive 

model in our application, it appears to be a natural first attempt in identifying store identities. 

For each Store 𝑖, the predicted probability that its store ID is 𝑖′ is computed as the mean of  

the predicted probability vector across held-out weeks to obtain the n-vector {𝑃(𝑌̂𝑖 =
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𝐼𝐷1), … , 𝑃(𝑌̂𝑖 = 𝐼𝐷𝑛)} :  

                                                   𝑃 (𝑌̂𝑖 = 𝐼𝐷
𝑖′

) =
1

𝑇
∑ 𝑃 (𝑌̂𝑖𝑘 = 𝐼𝐷

𝑖′
)

𝑇

𝑘=1

,                                                 (6) 

where 𝑃(𝑌̂𝑖𝑘 = 𝐼𝐷𝑖′) is the predicted probability that Store 𝑖 is Store 𝑖′, 𝑖′ = 2, … , 𝑛, in the held-out 

week k.   

The proposed method uses a (pseudo) out-of-sample fit criterion to avoid overfitting and to 

mimic the prediction problem for the potential intruder: synthetic sales and covariates are known, 

and the objective is to predict store identities. One way to do this is to use data for  𝑇 − 1 weeks and 

predict the data for the omitted week. To avoid capitalizing on the idiosyncrasies of  just one week, 

the method repeatedly leaves out one week at a time (𝑘 = 1, … , 𝑇) and uses 𝑇 − 1 observations to 

predict store IDs for week 𝑘. An alternative way is to split the data into an estimation sample (weeks 

1,2, … , 𝑇′) and a validation sample (weeks 𝑇′ + 1, … , 𝑇). Both holdout methods are used in the 

robustness check in Section 3.5. 

We define the following measure, called Loss of  Protection (𝐿𝑃𝑖), for Store 𝑖: 

𝐿𝑃𝑖 = √𝑛 ∑[𝑃(𝑌̂𝑖 = 𝐼𝐷𝑖′)]
2

𝑛

𝑖′=1

− 1.                                                       (7) 

In summary, 𝐿𝑃𝑖 measures the intruder’s confidence in the ability of  the available data to identify 

Store 𝑖.  𝐿𝑃𝑖 also has a natural lower bound of  0 for randomly guessing the identity of  store 𝑖 where  

𝑃(𝑌̂𝑖 = 𝐼𝐷1) = 𝑃(𝑌̂𝑖 = 𝐼𝐷2) = ⋯ = 𝑃(𝑌̂𝑖 = 𝐼𝐷𝑛) = 1/𝑛.  It has an upper bound of  √𝑛 − 1 if  

one store identification probability is 100% and each of  the other probabilities is 0%. In general, a 

smaller value of  𝐿𝑃𝑖  implies that the individual store is better protected.  𝐿𝑃𝑖 thus captures the 

variability of  store identification probabilities (or intruder confidence).  
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  Note that for market-level data, 𝐿𝑃𝑖  cannot be computed because there is no store 

information at all in the data. Therefore, we define the 𝐿𝑃𝑖 of  market-level data as 0. Our proposed 

𝐿𝑃𝑖 measure is closely related to, but distinct from, popular measures in the literature on information 

theory, such as Gini impurity, which is commonly used in classification trees (Breiman et al., 1984), 

and Entropy.6 The use of  Gini impurity and Entropy in classification trees, however, is very different 

from using the proposed 𝐿𝑃𝑖 measure, although there is strong similarity in the formulae. Gini 

impurity and Entropy are mainly used to measure the impurity of  a node in decision trees; however, 

the proposed 𝐿𝑃𝑖 statistic is a measure of  loss of  protection based on estimated probabilities of  

store identification.  

As a measure of  the protection level for the full set of  stores, we propose using Maximum 

Loss of  Protection (MLP), which is calculated as: 

𝑀𝐿𝑃 = max{𝐿𝑃1, … , 𝐿𝑃𝑛}.                                                        (8) 

MLP is useful in measuring the minimum level of  privacy across all stores; this measure is especially 

useful to a data provider concerned with the problems arising from the identification of  any store. 

In addition to MLP, one can use other statistics such as average, median, and minimum 𝐿𝑃𝑖 . For 

example, Average Loss of  Protection (ALP) can be used as an overall measure of  the protection 

level for the full set of  stores. 

The leave-one (week)-out cross validation approach we use helps the data provider to 

evaluate the out-of-sample predictability of  store IDs based on the released protected data versus 

the true data. An alternative view of  this process is that the data user or intruder has access to 

                                           

6 In our particular case, Gini impurity for store 𝑖 can be written as Gini𝑖 = 1 − ∑ 𝑃(𝑌̂𝑖 = 𝐼𝐷𝑖′)
2𝑛

𝑖′ . It is easy to see the 

link between LP and Gini impurity. 𝐿𝑃𝑖 = √𝑛 ∑ 𝑃(𝑌̂𝑖 = 𝐼𝐷𝑖′)
2𝑛

𝑖′=1 − 1 = √𝑛(1 − 𝐺𝑖𝑛𝑖𝑖) − 1. Entropy for Store i is 

defined as Entropy𝑖 = − ∑ [𝑃(𝑌̂𝑖 = ID𝑖′)] log2 𝑃(𝑌̂𝑖 = ID𝑖′)𝑛
𝑖′=1 . 
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training data with protected or true sales, and the true store IDs. The data user or intruder can then 

use these data as a training sample to build a predictive multinomial logit model of  store IDs.  In the 

AC Nielsen context, potential sources of  such training data are individual retailers, and retail chains 

or wholesalers who directly sell or share their own data, and/or allow store identities to be 

observed.7 This model can then be used to predict store identities in newly released data in which 

store IDs have been disguised (in Appendix E we show a simple example of  this prediction 

process).  

To make this idea more precise, say the data user or intruder has access to historical released 

data (with protected or true sales) with true store identities (e.g., “these are the prices and the 

(synthetic) sales of  Tide 147 at the Kroger on Thompson Road in Indianapolis”): 𝑨 =

{𝑌𝑖𝑡, 𝑺̃𝒊𝒕(𝒐𝒓 𝑺𝒊𝒕), 𝑷𝒊𝒕, 𝑫𝒊𝒕}, 𝑡 = 1,2, … , 𝑇′. The data user or intruder builds a predictive multinomial 

logit model on 𝑨 and uses the estimates to predict the store identities, 𝑌̂𝑖(𝑡=𝑇′+1,…,𝑇) in newly 

released data 𝑅 = {𝑺̃𝒊𝒕, 𝑷𝒊𝒕, 𝑫𝒊𝒕}, 𝑡 = 𝑇′ + 1, … , 𝑇. Note that the subscript 𝑖 indicates that the data 

user receives a hashed version of  store IDs in the newly released data so that it does not know the 

store identities, but knows which weekly observations belong to the same store. We provide 

empirical results based on this type of  analysis in Section 3.5. Importantly, the results from using 

this method are qualitatively consistent with those from the leave-one (week) out cross validation 

approach.  

2.4.2  Measures of  Information Loss Due to Data Protection 

In our discussion of  information loss from data protection, our empirical analysis focuses 

                                           

7 Some examples of retailers’ data sharing programs include Retail Link (Walmart), Partners Online (Target), Workbench 

(Sears) and Vendor Dart (Lowe’s). The primary goals of such programs are to facilitate better management of shipments, 
inventory, out-of-stocks and forecasts, often at the store level. Note that these data are typically not a substitute for retail 
data provided by syndicated data providers like AC Nielsen, which are based on careful sampling of stores and hence 
provide the benefits of being able to project sales volumes, market shares, prices, and promotional activities to regional 
and national markets. 
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mainly on the estimated own-price elasticities; similar ideas apply to the estimated promotion 

effects. Since price elasticities are a key metric in determining optimal mark-ups and profitability, and 

for conducting “what if ” analyses, we assume that an important goal of  data users is to correctly 

estimate these own price elasticities. The estimates from the “unprotected” (true) store-level data are 

taken to be the true elasticities 𝛽𝑗 . Information loss under any data protection method is measured 

as the Mean Absolute Percentage Deviation (MAPD) of  the estimated price elasticities based on the 

protected data, 𝛽̂𝑗 , from the true 𝛽𝑗 : 

𝑀𝐴𝑃𝐷 =
1

𝐽
∑ |

𝛽̂𝑗 − 𝛽𝑗

𝛽𝑗
|

𝐽

𝑗=1

× 100%.                                                   (9) 

 Additionally, MSE is defined as the Mean Squared Error of  parameter estimates from using 

protected data compared to the corresponding parameter estimates from using the original data.  

𝑀𝑆𝐸 =
1

𝐽
∑(𝛽̂𝑗 − 𝛽𝑗)

2

𝐽

𝑗=1

. 

In our paper, we disregard estimation uncertainty; consequently, we assume that the 

original, unprotected store-level data has a MAPD and MSE of  0%. Since an important managerial 

use of  estimated elasticities is determining optimal prices (e.g., Reibstein and Gatignon 1984), we 

also compute for each brand the optimal mark-up over marginal cost (MC), defined as  

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑀𝑈𝑗% =
𝑃𝑟𝑖𝑐𝑒𝑗 − 𝑀𝐶𝑗

𝑀𝐶𝑗
× 100% =

1

|𝛽𝑗| − 1
× 100%.                            (10) 

Additionally, we compute the deviations from optimal profits (i.e., maximum profit using the true 

data) as another measure of  the loss of  information. For the SCAN*PRO model, which is a 

constant elasticity sales response model, the assumption of  constant marginal cost for any brand 

yields the following expression for the ratio of  optimal profits relative to the no protection case ( the 

j subscript has been suppressed throughout in the expression for simplification; the derivation of  
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this formula is shown in Appendix D): 

Π̂

Π
=

Π(𝑃̂)

Π(𝑃)
= (

𝑃̂ − 𝐶

𝑃 − 𝐶
) (

𝑃̂

𝑃
)

𝛽

= (
𝛽 + 1

𝛽̂ + 1
) (

𝛽 + 1

𝛽̂ + 1

𝛽̂

𝛽
 )

𝛽

,                                (11) 

where  Π̂ and 𝑃̂ are the optimal profit and optimal price, respectively, based on the estimated price 

elasticities from protected data, whereas Π and 𝑃 are the optimal profit and optimal price, 

respectively, based on the price elasticities estimated using unprotected data. 

 Note that estimates of  elasticities that are of  absolute magnitude smaller than 1 result in 

meaningless estimates of  both the optimal markup and the deviation from optimal profits. We point 

out these cases in our discussion of  empirical results as indications of  the lack of  face validity of  the 

estimated elasticities.  

3. Empirical Application 

 We apply the model in (1) to AC Nielsen point-of-sale scanner data for five brand-sizes of  

powdered detergents from the three largest brands in the market: 72 and 147-ounce packs of  Tide 

and Oxydol and the 72-ounce pack of  Cheer. The data are weekly store-level sales, prices and 

promotions in 34 stores in Sioux Falls, SD, and Springfield, MO, collected over 102 weeks. These 

data have also been used in Christen et al. (1997).  

To compute measures of  loss of  protection, we conduct analysis similar to leave-one-out 

cross validation as discussed in Section 2.4.1. We use all-but-one week of  observations of  data (𝑨 =

{𝑌𝑖𝑡, 𝑺̃𝒊𝒕, 𝑷𝒊𝒕, 𝑫𝒊𝒕},  𝑖 = 1, … , 𝑛  stores and 𝑡 = 1, … (−𝑘), … , 𝑇 weeks) to predict the store ID for 

the left-one-out observation. We repeat this process for all weeks and compute all reported measures 

of  loss of  protection. 

We compare the performance of  the proposed method with the performances of  seven 

benchmark data protection methods. Benchmark Method 1 is the unprotected, store-level data, where 
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we have no information loss by definition, and the largest loss of  protection. Benchmark Methods 2, 

3, 4, 5, and 6, respectively, are as follows: adding random noise, rounding, top coding, 20% swapping, 

and 50% swapping.  Finally, Benchmark Method 7 is based on using (aggregated) market-level data, 

which reflects the type of  data AC Nielsen offers its clients. See the definitions in Table 1. 

For adding random noise, due to the large variance of  original sales, we first bin observations 

into deciles based on sales, and then add random noise for each bin separately using its empirical 

variance. For rounding, the unprotected sales are simply rounded to the nearest hundred. For top 

coding, any observation in which sales is greater than the 95th percentile is truncated so that extreme 

values can be protected. For swapping, we chose a specified percentage of  observations (20% and 

50% in our analysis) at random and divided these observations into two groups at random. Then the 

values of  sales were exchanged between these two groups. The remaining variables, namely store ID, 

prices, displays, and feature were unchanged. 

Table 1: Definition of  Benchmark Protection Methods 

 Benchmark Method Description 

1 “True” or Unprotected 
Store-Level Data 

Original store-level sales data without any protection 

2 Random Noise Observations are binned into deciles based on sales, and random  
noise is added to the sales in each decile 

3 Rounding Sales are rounded to the nearest hundred 

4 Top Coding Sales greater than the 95th percentile are truncated 

5 20% Swapping 20% of  observations are divided into two groups and their sales  
data are exchanged 

6 50% Swapping 50% of  observations are divided into two groups and their sales 
data are exchanged 

7 Market-Level  For each week sales are summed and prices and promotions are  
averaged across stores to the market level 

 

3.1 Trade-Off  Between Information Loss and Loss of  Protection 

We focus first on the loss of  information with respect to estimates of  the own-price 

elasticities of  the five brand-sizes as measured by MAPD, and loss of  protection as measured by our 

proposed measure, MLP. The reason to focus on MLP (instead of  ALP) is that this measure 
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corresponds to a worst-case scenario and reflects the largest potential cost to the data provider from 

disclosure of  even one store’s ID. Figure 4 shows the results of  our proposed method as we vary к 

from 0.1 to 15, as well as those for the seven benchmark methods8.  

As discussed, in the proposed method,  is a managerially determined parameter that 

reflects the trade-off  between the level of  protection and information loss. As expected, increasing 

 leads to greater information loss, and reduces the ability of  the data user to accurately estimate 

price elasticities. In addition, it protects the data by lowering the risk of  identification of  store IDs. 

The choice of   reflects the criterion selected by the data provider to choose the preferred tradeoff    

between the level of  protection   across all stores and the implicit degree of  precision in estimating 

elasticities that the data provider chooses to offer its clients.  

 
 
 
 
 
 
 
 

Figure 4. Performance of  Alternative Data Protection Methods 
 

                                           
8 We are grateful to an anonymous reviewer for useful suggestions on the presentation of Figure 4 and its interpretation.  
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Figure 4 shows that there are considerable differences in the performances of  the different methods 

using the two criteria: information loss and loss of  protection. Importantly, Figure 4 makes it clear 

that the choice of  a data protection strategy requires the firm to make a tradeoff  between these 

criteria. We note that while AC Nielsen’s extant approach of  aggregating data to the market-level is 

the most effective in terms of  protection, it leads to substantial loss of  information with an MAPD 

of  43.7%.  This result is consistent with the literature on aggregation bias (Christen et al. 1997) 

which reports large biases in parameter estimates due to aggregation.  

Note that none of  the benchmark methods dominates (i.e. lies to the southwest of) the 

proposed method at any level of  к. By using the proposed method, the data provider has the choice 

of  giving up protection in order to provide more information. For instance, a data provider who 

faces strong competition from rival data providers who promise clients higher data quality may 

decide to pursue that option by choosing smaller values of  к. 
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We see from Figure 4 that random noise, top coding, and rounding, offer the same levels of  

protection as the original store-level data, but lead to greater loss of  information. Thus, given our 

data it would not be prudent for the data provider to use these methods.  Although 50% swapping 

and 20% swapping provide greater protection than store-level data, they imply considerable loss of  

information. Nevertheless, both methods dominate providing market-level data and hence are 

reasonable options for the data provider to consider. Our proposed method allows the decision 

maker the flexibility through the choice of  к to choose a data protection strategy that dominates 

both 20% swapping and 50% swapping. For illustrative purposes, the results shown henceforth for 

the proposed method assume к = 1. 

As an illustration we show in Figure 5 the average predicted probabilities from the estimated 

multinomial logit model where the observed prices, promotions and sales come from each of  the 34 

stores. The probabilities are shown for both the true sales data and synthetic sales data (generated 

using the proposed method with κ=1) and are based on Equation (6). Note that the data in fact 

come from Store 12. The figure shows that the true data give the intruder relatively high confidence 

(average predicted probability is about 25% and the largest among the 34 probabilities) that the 

released data are from Store 12. By contrast, the synthetic data give the intruder much lower 

confidence (average predicted probability is about 5%) that the released data are from Store 12.  

Note that 5% is close to the outcome from random guessing, which has a corresponding 

identification probability of  1/34 (2.9%).  From a managerial perspective, this drastic change in 

intruder confidence about the discoverability of  store ID (25% to 5%) could imply the difference 

between the intruder taking an undesirable action (from the data provider’s perspective) or not.  

 
 
 

Figure 5. Average Predicted Probabilities that Observed Point-of-Sale Data from 
Store 12 Came From Each of  the 34 Stores 
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3.2 Price Elasticities and Implied Optimal Markups and Profits 

Table 2 reports the profit-maximizing percentage markups over marginal cost based on the 

estimated price elasticities from the proposed and benchmark methods, for each of  the five brand-

sizes. If  the estimated price elasticity is smaller than one in absolute value, the optimal mark-up is 

“not meaningful”, and we indicate this as NM in the table. Taking the optimal mark-ups in the 

“Unprotected (True)” row to be the true mark-ups, we find that the extent of  deviation from the 

true mark-ups for the other methods roughly corresponds with the loss of  information indicated by 

the MAPD in Figure 4. However, we see some systematic deviations.  

Rounding and random noise lead to small deviations as expected based on their close-to-

zero MAPDs. We find that Top Coding, 20% Swapping, 50% Swapping and Market-level data each 

have at least one instance of  “not meaningful” mark-ups, with 50% Swapping leading to NM results 

for all five brand-sizes. Such results would lead data users to question the validity of  the protection 

method. Furthermore, Top Coding and 20% Swapping lead to larger-than-true optimal mark-ups in 
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all cases when the results are meaningful. By contrast, market-level data lead to smaller-than-true 

optimal mark-ups for the four brand-sizes for which results are meaningful. This is consistent with 

past literature (e.g. Christen et al. 1997) which shows that market-level data often overestimate the 

magnitude of  the own price elasticity. 

The mark-up results for the proposed method are reasonable ranging from the worst case 

of  Tide 147 where the estimated mark-up is 65% of  the true value in the first row of  Table 2, to the 

best case of  Oxydol 147 with a mark-up of  108% of  the true value. For all brands the estimated 

mark-ups are closer to the true markups than those implied by market-level data. 

Table 2: Optimal Mark-Up Percentages Implied by Estimated Price Elasticities 

  Tide 72 Tide 147 Cheer 147 Oxydol 72 Oxydol 147 

Unprotected (True)  144.0 267.9 168.9 186.7 214.8 

Random Noise   128.3 121.3 176.7 153.1 225.5 

Rounding  137.5 237.9 133.9 186.5 172.6 

Top Coding  183.9 NM 193.8 213.0 234.5 

20% Swapping  405.3 NM 272.0 478.4 491.4 

50% Swapping  NM NM NM NM NM 

Market-Level  115.1 77.9 74.8 NM 153.8 

Proposed Method (κ=1)  120.3 175.5 113.9 117.6 232.0 

NM: Not Meaningful 

Table 3 shows the ratios of  optimal profits computed under each data protection method 

relative to optimal profits under the unprotected scenario. Consistent with the results on optimal 

mark-ups, we see that rounding and random noise lead to close to optimal profits for all five brand-

sizes. In cases where the optimal mark-up shown in Table 2 is not meaningful NM), the ratios of  

optimal profits cannot be computed and are shown as not available (NA) in Table 3. Disregarding 

those cases, the ratios under top coding are close to 100% with the exception of  one brand (Tide 

147) where the ratio is about 51%. Under 20% swapping we find poor results for four of  five 

brands, and under market-level data we find poor results for three of  five brands.  

Under the proposed method we find good results for four of  five brands, and the worst 
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case brand is Cheer 147 with a ratio of  about 96%. Note that in the current empirical application (a 

constant elasticity demand function with constant marginal costs), the profit function for many of  

the brands appears to be quite flat near the maximum, suggesting that the cost to the user of  

imprecision in elasticities is relatively small. This finding may not hold in more complex models. 

Table 3: Ratio of  Optimal Profits Relative to Unprotected Case 

 Tide 72 Tide 147 Cheer 147 Oxydol 72 Oxydol 147 

Unprotected (True) 100.00% 100.00% 100.00% 100.00% 100.00% 

Random Noise 99.94% 99.13% 99.19% 99.44% 99.98% 

Rounding 99.96% 99.80% 98.99% 100.00% 99.23% 

Top Coding 98.80% 50.87% 99.65% 99.70% 99.88% 

20% Swapping 81.98% NA 96.08% 87.19% 90.78% 

50% Swapping NA NA NA NA NA 

Market-Level 98.97% 78.87% 87.91% NA 98.17% 

Proposed Method (κ=1) 99.59% 98.90% 95.88% 99.87% 99.51% 

NA: Not Available 

3.3  Comparison with Market-Level Data 

 In Table 4 we turn our attention to a comparison of  the estimated price and promotion 

effects for AC Nielsen’s extant method of  data protection – market-level data – with the 

corresponding estimates for the proposed data protection method.  

Table 4: Estimates of  Price and Promotion Effects: Comparison of  Results from 
Market-Level Data and Proposed Method  

 
Coefficient Estimates Relative Differencea 

 Store-
Level 

Market-
Level 

Proposed  

( =1) 

Market-
Level 

Proposed 

( =1) 

 Price 

Tide 72 -1.69 -1.87 -1.80 10.3% 6.5% 

Tide 147 -1.37 -2.28 -1.42 66.3% 3.9% 

Cheer 147 -1.59 -2.34 -1.95 46.8% 22.4% 

Oxydol 72 -1.54 -0.27 -1.59 -82.4% 3.5% 

Oxydol 147 -1.47 -1.65 -1.55 12.6% 5.7% 

Absolute averageb    43.7% 8.4% 

 Feature Only 

Tide 72 2.56 5.68 2.63 121.9% 2.8% 

Tide 147 2.41 3.52 2.11 46.0% -12.4% 

Cheer 147 10.75 9.40 9.69 -12.6% -9.9% 

Oxydol 72 4.91 34.78 5.49 609.1% 11.7% 

Oxydol 147 4.47 36.33 4.04 712.7% -9.7% 
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Absolute averageb    300.5% 9.3% 

 Display Only 

Tide 72 2.61 20.59 2.88 688.9% 10.5% 

Tide 147 2.44 13.09 2.21 436.5% -9.2% 

Cheer 147 5.83 14.34 5.68 146.0% -2.6% 

Oxydol 72 3.48 23.08 3.38 562.9% -2.8% 

Oxydol 147 5.00 121.25 5.65 2325.4% 13.1% 

Absolute averageb    831.9% 7.6% 

 Feature and Display 

Tide 72 4.51 0.97 3.93 -78.4% -12.9% 

Tide 147 5.74 3.22 6.58 -44.0% 14.7% 

Cheer 147 14.94 3.29E+13 9.57  -36.0% 

Oxydol 72 6.10 0.18 5.29 -97.0% -13.3% 

Oxydol 147 6.16 0.00 7.63 -99.9% 23.9% 

Absolute averageb    79.9%c 16.2% c 

Adjusted 𝑅2(avg.) 0.958 0.522 0.957   
aRelative difference = (Estimate – Store-level estimate)/Store-level estimate. 
bAbsoluteaverage is defined as the average of  absolute value of  relative difference. 
cAbsolute averages for Feature and Display do not include brand-size Cheer 147 because of  the 
unreasonably large estimated effect for market-level data. 

 
 We find that the absolute averages of  the relative differences for each of  price, display only, 

feature only, and display and feature effects are substantially, and in some cases dramatically, smaller 

for the proposed method than the corresponding effects computed using market-level data. For the 

promotion effects in particular, some of  the deviations of  market-level estimates are unreasonably 

large, similar to the results of  Christen et al. (1997). See, for instance, the estimates of  the effects of  

display only and feature only for the two sizes of  Oxydol, and the estimate of  feature and display for 

Cheer 147. These results suggest that our proposed method can relatively easily dominate the extant 

approach of  aggregating data to the market level in terms of  information if  the data provider is 

willing to tolerate a somewhat higher level of  risk of  disclosure of  store identities.  

3.4  Impact of  Kappa 

 In Figure 6 we show the values of  model parameters as the data protection parameter κ 

changes. We find that all parameters tend toward zero as κ increases, further demonstrating the 

tradeoff  between data protection and information.  
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Figure 6. Shrinkage Plots of  Fixed and Random Effects as Protection Increases 

 

3.5  Robustness of  Findings 

We conducted several additional analyses to assess the robustness of  our findings and 

report the results in Table 5. First, we report the results for average loss of  protection (ALP) as an 

alternative to MLP. ALP is an overall average measure of  the store identification risk in a given 

dataset, whereas MLP is a worst-case scenario across all stores in a data set. Second, we use an 

alternative measure of  information loss in addition to Mean Absolute Percentage Deviation: Mean 

Squared Error (MSE). We compute these measures for price elasticities (betas), promotion effects 

(gammas), and for both. In all cases we find that the performance of  the proposed method relative 

to any of  the benchmark methods remains substantially unchanged from what is shown in Figure 4 

and Table 4. Thus, the proposed method continues to dominate the standard method of  providing 

market-level data. 

Table 5. Robustness Check Using Different Measures 
 Loss of  Protection Information Loss 

 MLP ALP 
MAPD 

beta 
MSE 
beta 

MAPD 
gamma 

MSE 
gamma 

MAPD 
both 

MSE 
both 

Unprotected 
(True)1 

2.250 0.796 0 0 0 0 0 0 

Random Noise 2.269 0.797 0.053 0.008 0.026 0.003 0.032 0.005 

Rounding 2.260 0.795 0.046 0.008 0.008 0.000 0.017 0.002 

Top Coding 2.277 0.787 0.093 0.032 0.303 0.484 0.250 0.371 
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20% Swapping 1.471 0.425 0.243 0.141 0.266 0.261 0.260 0.231 

50% Swapping 1.025 0.180 0.445 0.498 0.437 0.487 0.439 0.490 

Market-Level2 0 0 0.437 0.610 1.995 60.630 1.606 45.625 

Proposed Method  

( =1) 
1.566 0.478 0.084 0.026 0.115 0.130 0.108 0.104 

Notes: 1. For Unprotected, the metrics for information loss are 0 by definition.  
2. For market-level data, we assume that the predicted probabilities for each store ID are equal; that 
is, 1/n for n=34 stores. Therefore, by the definition of  the loss of  protection metrics, we have 
MLP=ALP=0.  
 

As a robustness check we also considered a situation in which the data user or intruder has 

access to some historical true sales data with true store identities, as discussed in Section 2.4.1 where 

the available training data 𝑨 = {𝑌𝑖𝑡, 𝑺𝒊𝒕, 𝑷𝒊𝒕, 𝑫𝒊𝒕}, 𝑡 = 1,2, … , 𝑇′ is used to predict the store 

identities, 𝑌̂𝑖(𝑡=𝑇′+1,…,𝑇) using newly released data 𝑅 = {𝑺̃𝒊𝒕, 𝑷𝒊𝒕, 𝑫𝒊𝒕}, 𝑡 = 𝑇′ + 1, … , 𝑇. Table 6 

gives the ALP and MLP estimates based on the proposed method and benchmark methods when 

half  of  true sales data from week 1 till week 𝑇′ = 51 are used to estimate a multinomial logit model 

for store-ID prediction, and predictions of  store IDs are made in the remaining weeks 52 to 𝑇 =

102. In addition, we conducted analyses when different proportions of  data or protected data 𝑨 =

{𝑌𝑖𝑡, 𝑺̃𝒊𝒕 (𝑜𝑟 𝑺𝒊𝒕), 𝑷𝒊𝒕, 𝑫𝒊𝒕} are used to build the multinomial logit model. Overall, the results are 

qualitatively consistent with those from the leave-one (week) out cross validation.  

Table 6. Robustness Analysis for the Scenario When the Intruder Has True Historical Sales 
Data and True Store IDs 

Protection Method ALP MLP 

Unprotected (True) 0.773 1.649 
Random Noise 0.754 1.641 
Rounding 0.776 1.628 
Top Coding 0.766 1.649 
20% Swapping 0.556 1.058 
50% Swapping 0.412 0.994 
Proposed  0.419 1.143 

 
4. Conclusions and Future Research Directions 

  This paper proposes a synthetic data methodology that captures the roles of  three parties: 

the data provider as a commercial supplier who protects data with a data protection method, the 
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data user as a customer, and the potential data intruder. A key distinguishing feature of  our 

framework relative to the privacy literature in statistics and computer science is that we explicitly 

recognize the business goals of  the data user as reflected in the data user’s model, and incorporate 

these into the data provider’s model for protecting data. We propose a flexible Bayesian 

methodology in which the decision maker uses a tuning parameter (к) to analyze the tradeoff  

between the conflicting goals of  profitability and risk of  data disclosure (confidentiality). We 

measure information loss using the Mean Absolute Percentage Deviation (MAPD) criterion. In 

addition, we propose two new metrics to measure the risk of  data disclosure: Average Loss of  

Protection (ALP) and Maximum Loss of  Protection (MLP).   

We test the proposed methodology using retail point-of-sale data marketed by a vendor to its 

commercial customers. The vendor sells data but seeks to protect the identities of  sample stores 

from potential intruders (confidentiality). By contrast, commercial customers use the data to 

estimate brand-level price elasticities to determine optimal mark-ups, and the sales effects of  

promotions. We show that by enabling the data provider to choose the degree of  protection to 

infuse into the synthetic data, our method performs well relative to seven benchmark data protection 

methods, including the extant approach of  aggregating data across stores (e.g., AC Nielsen). 

An important limitation of  the proposed identification disclosure risk model in the 

empirical application reported in this paper is that the estimated probabilities of  an observation 

belonging to stores in a given time period do not sum to 100%. Development of  estimation 

approaches that can incorporate this constraint when needed is an important area for future 

research. Further, it is important to recognize that our framework and approach are most relevant 

when it is possible for a data provider to identify a primary valid use model of  data users. In our 

application, we used the SCAN*PRO model which is widely employed by users of  AC Nielsen retail 

data. In such situations our proposed method allows the data provider to protect the data taking 
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account of  its data users’ business goals. In other situations where the data user's primary purpose is 

to use the data to conduct exploratory analysis, implying that data users’ models are not well 

structured, or different data users have very different models, our framework is not as directly 

applicable. An example of  exploratory analysis is examining the distribution of  sales volumes across 

stores for the purpose of  creating retail segments. Although our framework was not specifically 

geared toward such analysis, we found (results are not shown in this paper for reasons of  space) that 

using synthetic store-level data produced similar results to using the true store-level data. Note that 

such retail segmentation analysis cannot be performed using the market-level data currently released 

by vendors such as AC Nielsen.  Additionally, a data user may be interested in knowing the precision 

of  the synthetic data relative to the true data.  When the measures of  precision are for market-level 

statistics such as brand sales or brand market shares, we don’t expect such additional information to 

change the level of  protection. However, if  data users desire measures of  precision that may reveal 

additional store-level information, such as information about precision of  ranks of  stores based on 

sales volumes, the level of  protection will be reduced, regardless of  method. We conjecture that the 

relative rankings of  different data protection methods will be unchanged.  We leave a detailed 

investigation of  this issue to future research. 

We believe several extensions and generalizations of  the models presented in this paper 

should be of  interest to academics and practitioners alike. We discuss some of  these possibilities 

next. In this paper we considered a single random effect in the data provider’s model. Generalization 

of  the data provider’s model to more than one group of  random effects, or variable-specific effects, 

should be of  interest when the data provider would like to choose different levels of  data protection 

for different market segments (subgroups of  data). For example, in the context we have modeled, 

one group of  store IDs (e.g., large stores) may be highly confidential and require high levels of  

protection, whereas another group of  store IDs (e.g., small stores) may require lower levels of  
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protection. Our data protection methodology readily extends to more general cases wherein random 

effects are hierarchical or it is necessary to distinguish M groups, each with its own variance. By 

using the hierarchical framework of  the Bayesian random effects model, our methodology will allow 

the data provider to choose which groups of  effects or segments require more protection than 

others.  

Additionally, a data user may be interested in other marketing mix models that include 

competition or more general interactions among marketing mix elements. One weakness of  the 

current framework is that the synthetic data only contain information about the variables which are 

included in the data generating process in the data provider’s model.   An adjustment of  the data 

provider’s model is certainly possible in order to accommodate other variables. In this regard note 

that Schneider and Abowd (2015) found that a much stronger prior was needed to achieve the same 

privacy levels in a model with three-way interactions, although the fit of  the resulting model on the 

protected data was similar to that of  a model with no interactions.  Our findings in this paper are 

similar in that there is an inherent tradeoff  between data protection and commercial value, but we 

leave the investigation of  more complex marketing mix models to future research.   

 In the current paper we assumed that only the sales data needed to be protected, whereas 

data on the covariates – prices and promotions – could be released without protection since they 

were much less informative about the confidential data. Our recommendation is that this approach 

is most suitable for stores which belong to one chain with a uniform pricing and promotion strategy. 

If  in fact the covariates are informative and not publicly available, one would want to generate 

“triply synthetic” data for multiple variables, such as sales, prices, and promotions. This would result 

in multiple conditional models, with the added challenge that the collection of  conditional 
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distributions may not result in a proper joint distribution (Reiter 2011). We leave the investigation of  

this problem to future research.9 

  In our application we used sales data which are continuous, hence a log-linear model with 

additive Gaussian errors was appropriate. Marketing data, however, are often categorical in nature. A 

prototypical example is consumer brand choice data gathered from household panels. The 

appropriate statistical models for such data are multinomial logit and probit models. When the data 

user’s model is a generalized linear model, the data provider’s base model (3) can be extended to a 

generalized linear mixed effects model (GLMM) 𝑔(𝐸(ln 𝑦𝑖𝑗𝑡)) = 𝜇𝑗 + 𝑢𝑖𝑗 + 𝛽𝑗𝑋𝑖𝑗𝑡, where 𝑔(∙) is a 

link function, such as the logistic link or probit link and 𝐸(∙) denotes the conditional expectation. In 

terms of  estimation, the MCMCglmm R package used in this paper can also be used for categorical 

dependent variables (Hadfield 2010).  

 Even though the analytical results such as full conditionals we have presented in the 

Appendix are no longer available for non-Gaussian GLMM, the proposed Bayesian MCMC 

framework remains valid; however, such cases will require more intensive computation. We can use a 

similar algorithm as in Section 2 and draw protected (synthetic) data from the appropriate non-

normal conditional distributions.  For example, for the logistic link 𝑔(𝐸(ln 𝑦𝑖𝑗𝑡)) = ln (
𝐸(ln 𝑦𝑖𝑗𝑡)

1−𝐸(ln 𝑦𝑖𝑗𝑡)
) 

with binary choice response, the protected (synthetic) response can be drawn from Bernoulli trials 

with mean probability 𝑔−1(𝜇𝑗 + 𝑢𝑖𝑗 + 𝛽𝑗𝑋𝑖𝑗𝑡). The empirical performance of  such data protection 

methods should be of  great interest to both marketing practitioners and academics.  

                                           

9 Across all protection methods, results are qualitatively similar to those presented in the paper when we used protected 

sales and also added a normally distributed random noise to protect the price data. 
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Appendix: Key Theoretical Results and Algorithm for Data Protection Method 

A. Full Conditionals of  Other Model Parameters 

The full conditionals for other model parameters can be analytically derived as shown below. 

𝜏̃2 | ⋯   ~  IG(𝑎𝑛, 𝑏𝑛); 
 

𝑢̃| ⋯    ~  MVN(𝐴𝑢, 𝐵𝑢); 
 

𝜇| ⋯    ~  N(𝐴𝜇, 𝐵𝜇), 
 
where 

𝑎𝑛 = 𝑎0 +
𝑛𝑇

2
,      

𝑏𝑛 = 𝑏0 +
(ln 𝑺 − 𝜇𝟏𝑛𝑇 − 𝑿[𝛽, ln 𝜸] − 𝒁𝒖)𝑇(ln 𝑺 − 𝜇𝟏𝑛𝑇 − 𝑿[𝛽, ln 𝜸] − 𝒁𝒖)

2
, 

 

𝐴𝑢 = (𝒁𝑇𝒁 +
𝜏2

𝜎𝑢
2

𝐈)

−1

𝒁𝑇(ln(𝑺) − 𝜇𝟏𝑛𝑇 − 𝑿[𝛽, ln 𝜸]);     𝐵𝑢 = 𝜏2 (𝒁𝑇𝒁 +
𝜏2

𝜎𝑢
2

𝐈)

−1

, 

 

𝐴𝜇 =
𝐾2(ln 𝑺 − 𝑿[𝛽, ln 𝜸] − 𝒁𝒖)𝑇𝟏𝑛𝑇

𝜏2 + 𝑛𝑇 × 𝐾2
;      𝐵𝜇 =

𝐾2𝜏2

𝜏2 + 𝑛𝑇 × 𝐾2
   . 

 
 

Using matrix notation, ln(𝑺) is an 𝑛𝑇 dimensional response vector, 𝑿 = [ln 𝑷 𝑫1 … 𝑫𝐿], 𝑢 is an 𝑛-

dimensional random effect vector, 𝒁 is an 𝑛𝑇 × 𝑛 dimensional indicator matrix such that 𝒁𝒖 =

[𝑢1, … , 𝑢1, … , 𝑢𝑖 , … , 𝑢𝑖 , … , 𝑢𝑛, … , 𝑢𝑛] is an 𝑛𝑇 dimensional vector. 

B. Algorithm for Proposed Data Protection Method   
 
Model Estimation Procedure (based on the MCMCglmm package in R): 
 

Given the conjugate prior of  overall intercept 𝜇, fixed effect 𝛽 and random effect 𝒖, and the 

variance of  error term 𝜏2 and variance of  random effect 𝜎𝑢
2, we can derive the full conditional 

distribution for each model parameter. 

1. MCMC (Monte Carlo Markov Chain) procedure by Gibbs sampling: Based on the full 

conditional distributions, the model parameters can be sampled for thousands of  iterations. 

In particular: 
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1.1. Start from a set of  initial values 𝜇(0), [𝛽, ln 𝜸](0), 𝒖(0), 𝜏2(0)
, then draw 𝜎𝑢

2(1)
 from its 

conditional distribution 𝜎𝑢
2(1)

| 𝜇(0), [𝛽, ln 𝜸](0), 𝒖(0), 𝜏2(0)
. Do the same for 

𝜇(1), [𝛽, ln 𝜸](1), 𝒖(1), 𝜏2(1)
.  

1.2. Given 𝑘𝑡ℎ draw of  parameters: 𝜇(𝑘), [𝛽, ln 𝜸](𝑘), 𝒖(𝑘), 𝜏2(𝑘)
, 𝜎𝑢

2(𝑘)
, make the (𝑘 + 1)𝑡ℎ 

draw based on the full conditional distributions.  

2. Burn-in a certain number of  samples from the beginning, and use the remaining samples for 

Bayesian estimation and inference.  

Data Generating Procedure: 
1. Take a draw of  all parameters from the MCMC samples. Then draw the response based on 

its conditional distribution: 

ln 𝑺 |𝜇, 𝛽, ln 𝜸 , 𝒖, 𝜏2, 𝜎𝑢
2; 𝑿, 𝒁 ~ MVN(𝜇𝟏 + 𝑿[𝛽, ln 𝜸] + 𝒁𝒖, 𝜏2). 

2. Step 1 generates a column of  synthetic responses, which is called protected data. To generate 

another column of  synthetic response, we take another draw of  parameters, and use the 

same procedure. 

Note that in general Bayesian estimation and inference we need to average the MCMC draws of  

parameters. The mean values are treated as estimated parameters. However, in a data protection 

framework, we only take one draw of  parameters as estimates instead of  averaging all MCMC draws. 

The reason is that, averaged values contain much more information than one draw; the result is that 

the generated values are close to the true values. Consequently, averaging may result in worse 

protection.  

C. Analysis of  Key Variables to Protect 

We analyze different variables and their combinations to identify key variables to protect. A 

natural way for intruders to predict the store ID is via a multinomial logistic regression modeling 

approach using a training data set at hand with variables such as Sales, Price, and Promotion, and 

their combinations.  

Table C.1 shows the overall average, median and maximum loss of  protection (LP). The 

ALP with Sales-only is 0.511 compared with 0.062 with Price-only, 0.015 with Promo-only, and 

0.104 with Price + Promo combinations. A similar qualitative finding holds for median and 

maximum LP measures. This shows that Sales has the strongest predictive power of  store ID; hence 
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Sales may be the most important variable to protect.  

Table C.1 Comparison of  Loss of  Protection Measures with Different Variables. 

Variable 
Average Loss of  

Protection 
(ALP) 

Median Loss of  
Protection 

Maximum Loss 
of  Protection 

(MLP) 

Sales only 0.511 0.409 1.420 

Price only 0.062 0.026 0.741 

Promo only 0.015 0.011 0.051 

Sales + Price 0.678 0.624 1.918 

Sales + Promo 0.601 0.535 1.452 

Price + Promo 0.104 0.062 0.874 

Sales + Price + Promo 0.796 0.830 2.250 

 

D. Derivation of  Formula for Deviation from Optimal Profit 

Let Π be the profit, 𝐶 be the marginal cost, 𝑃 be the price, and 𝑆 be the sales. Then we have 

Π(𝑃) = (𝑃 − 𝐶) ∗ 𝑆. 

By substituting SCAN*PRO model (1) for each brand, we have  

Π(𝑃) = (𝑃 − 𝐶)𝛼𝑃𝛽𝛾𝐹.                                                      (𝐷. 1) 

Here we drop subscripts for simplicity. It is easy to see that Π(𝑃) is a concave function of  𝑃. By taking 

first-order derivative of  (D.1) with respect to 𝑃, and setting to 0, we have 

𝛼𝑃𝛽−1𝛾𝐹[(1 + 𝛽)𝑃 − 𝐶𝛽] = 0.                                                (𝐷. 2) 

We solve Equation (D.2) for 𝑃, and find the optimal price 𝑃 as  

𝑃 =
𝐶

1 +
1
𝛽

.                                                                 (𝐷. 3) 

Denote  𝑃̂ as the optimal price based on the estimated price elasticity 𝛽̂, which is obtained from 

protected data. Substituting (D.3) into (D.1), by simple algebra, we see that the ratio Π(𝑃̂)/Π(𝑃) has 

the following form 

Π̂

Π
=

Π(𝑃̂)

Π(𝑃)
= (

𝑃̂ − 𝐶

𝑃 − 𝐶
) (

𝑃̂

𝑃
)

𝛽

= (
𝛽 + 1

𝛽̂ + 1
) (

𝛽 + 1

𝛽̂ + 1

𝛽̂

𝛽
 )

𝛽

. 


