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Causality

* In the applications of statistics, many central questions are
related to causality rather than simply association.

* Sociology: Does divorce affect children’s education?

* Health: Is a new drug effective against a disease?

* Economy: Does a job training program improve participants’ earnings?
* Business: Does a sales reward program boost a company’s profits?

* People care about not only the causal effect itself, but also
how and why an intervention affects the outcome.
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What Is Mediation?

* |t uncovers the black box.

e Baron and Kenny (1986): it represents the generative mechanism
through which the focal independent variable (treatment) is able to
influence the dependent variable of interest (outcome).

* |t decomposes the total treatment effect into an indirect effect
transmitted through the hypothesized mediator and a direct effect
representing the contribution of other unspecified pathways.

Mediator

Treatment Outcome



Example

Maternal Speech
(Mediator: M)

SES Child Vocabulary
(Treatment: T) (Outcome: Y)

* Indirect Effect: The improvement in child vocabulary attributable to
the SES-induced difference in maternal speech.

* Direct Effect: The impact of SES on child vocabulary without
changing maternal speech.



Conventional Estimation Method
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(Wright, 1934; Baron and Kenny, 1986; Judd and Kenny, 1981)

* Total treatment effect: ¢
 Direct Effect: ¢’
e Indirect Effect: ab or ¢ — ¢’
* Significance test: Sobel test (Sobel, 1982); Bootstrapping
(Bollen & Stine, 1990; Shrout & Bolger, 2002); Monte Carlo
Method (MacKinnon, Lockwood, and Williams, 2004)



Limitations

Maternal Speech
(Mediator: M) b

Child
Vocabulary
’ (Outcome: Y)

SES

(Treatment: T)
C

* The path coefficients represent the causal effects of interest only when
* the functional form of each of the models is correctly specified
* no confounding of the T-Y relation (no covariates associated with both T and Y)
* no confounding of the T-M relation
* no confounding of the M-Y relation (Either pre-treatment or post-treatment)

* no interaction exists between T and M affecting Y. Howeuver, this typically
overlooks the fact that a treatment may generate an impact on the outcome
through not only changing the mediator value but also changing the mediator-
outcome relationship (Judd & Kenny, 1981).



Potential Outcomes
Framework

Rubin (1978, 1986)

Book recommendation: Imbens and Rubin (2015)



ie: It’s a Wonderful Life
l.g Source: Imbens and Ruk













Potential Outcomes Framework

Observed Counterfactual
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Definition of Causal Effects

Individual i’s potential outcome under T = 1:Y;(1)
Individual i’s potential outcome under T = 0:Y; (0)
Treatment effect for individual i: Y;(1) — Y;(0)

Population average treatment effect: § £ E[Y(1)] — E[Y(0)]

ID Treatment Potential outcomes Causal effect
| T; ¥ (1) ¥;(0) Y;(1) - ¥;(0)
1 1 16 12 4
2 1 14 10 4
3 1 15 2 13
4 0 20 10 10
5 0 10 6 4

True averages E[Y(1)] =15 E[Y(0)]=8 §=7




SUTVA
(Stable Unit Treatment Value Assumption)

* No Interference

* The potential outcomes for any unit do not vary with the
treatments assigned to other units.

* No Hidden Variations of Treatments

* For each unit, there are no different forms or versions of
each treatment level, which lead to different potential
outcomes.



ldentification of Causal Effects

ID Treatment Potential outcomes Causal effect

| T; Y;(1) Y;(0) Y;(1) - ¥;(0)

1 1 16 ? ?

2 1 14 ? ?

3 1 15 ? ?

4 0 ? 10 ?

5 0 ? 6 ?

True averages E[Y(1)] =15 E[Y(0)] =8 §=7
Observed averages E[lYIT=1]=15 E[Y|T=0]=8 E[Y|T=1]—-E[Y|IT=0]=7

* |dentification relates counterfactual quantities to observable population data.
In a randomized design, ignorability assumption holds:

UnderY;(t) L T; fort = 0,1, E[Y(t)] = E|Y(t)|T = t]. Hence
§ = E[Y|T = 1] — E[Y|T = 0]



ldentification of Causal Effects

* In observational studies, we are able to identify the causal effect

under strong ignorability assumption:

Yi(0) LT;|X; = x
where 0 < P(T; = 11X; =x) <1

* Population average treatment effect can be identified by

§ = E{E[Y|T = 1,X]} — E{E[Y|T = 0,X]}



Estimation of Causal Effects

* Propensity-score based methods (Rosenbaum and Rubin, 1983):
* Matching
* Subclassification
e Covariance adjustment
* Inverse weighting
* Sensitivity Analysis (Rosenbaum, 1986)

* The goal is to quantify the degree to which the key identification
assumption must be violated for a researcher’s original conclusion to be
reversed.

* Software list (including R packages) on Prof. Elizabeth Stuart's webpage:
http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html



Causal Mediation Analysis

Book recommendation: Hong (2015); VanderWeele (2015)



Research Question |

SES Child Vocabulary
(Treatment: T) (Outcome: Y)

e How much is the average SES impact on child vocabulary?



Research Question |l

Maternal Speech
(Mediator: M)

SES Child Vocabulary
(Treatment: T) (Outcome: Y)

* How would the SES-induced change in maternal speech exert an impact
on child vocabulary?



Definition pear, 2001)

Maternal Speech
(Mediator: M)

SES Child Vocabulary
(Treatment: T) (Outcome: YY)
High SES Low SES
Ti = Ti =0

Maternal speech if SES is high
M; (1)

Maternal speech if SES low

ML (0) Y;(0, M;(0))

Population Average Natural Indirect Effect: E|Y (1, M(1))]| — E[Y(1,M(0))] 22



Research Question Il

SES Child Vocabulary
(Treatment: T) (Outcome: Y)

* How much is the average causal effect of SES on child vocabulary
without changing maternal speech?



Definition pear, 2001)

SES Child Vocabulary
(Treatment: T) (Outcome: Y)
High SES Low SES

Maternal speech if SES is high
M; (1)

Maternal speech if SES is high I
Mi(o) L

Population Average Natural Direct Effect: E|Y (1, M(0))]| — E[Y(0, M(0))1,4



Alternative Definitions pear 2001)

* Manipulations
* Controlled direct effect: E[Y(t,m)] — E[Y (t,m')]

* Causal effect of directly manipulating the mediator under T =t
* Natural Mechanisms

* Natural Indirect effect: E[Y(l,M(l))] — E[Y(l,M(O))]

* Counterfactuals about treatment-induced mediator values

* The following discussions will be focused on this definition.



ldentification of Causal Effects

* We face an “identification problem” since we don’t observe Y;(1, M;(0))

* Sequential Ignorability (Imai et al., 2010a, 2010b)
(@', m), M;(0)} LT|X; = x
Y;(t',m) L M;(t)|T; = t,X; =x,fort’,t =0,1
where 0 < Pr(T; = t|X; =x) < 1,0 < Pr(M;(t) = m|T; = t,X; =x) < 1

* Within levels of pretreatment confounders, the treatment is ignorable.

* Within levels of pretreatment confounders, the mediator is ignorable given
the observed treatment.



Existing Analytic Methods

* Instrumental Variable Method (Angrist, Imbens and Rubin, 1996)
e Exclusion restriction: a constant zero direct effect

e Assumes no T-by-M interaction

Marginal Structural Model
* For controlled direct effect: Robins, Hernan, and Brumback (2000)
* For natural direct and indirect effects: VanderWeele (2009)

e Assumes no T-by-M interaction

Modified Regression Approach (Valeri & VanderWeele, 2013)
M=d;+aT + 1 X+ e
Y=d,+cT+bM+dTM + B,X + e,
Resampling Method
Weighting Method




Resampling Method (imaietat, 2010a, 2010b)

e Algorithm 1 (Parametric)
e Step 1: Fit models for the observed outcome and mediator variables.
e Step 2: Simulate model parameters from their sampling distribution.
» Step 3: Repeat the following three steps for each draw of model parameters:
e 1.Simulate the potential values of the mediator.
* 2.Simulate potential outcomes given the simulated values of the mediator.
* 3. Compute quantities of interest (NDE, NIE, or average total effect).

e Step 4: Compute summary statistics, such as point estimates (average) and
confidence intervals.

e Sensitivity analysis
* Algorithm 2 (Nonparametric/Semiparametric)
* Combine Algorithm 1 with bootstrap

* R package: “mediation”
* http://imai.princeton.edu/software/mediation.html

* http://web.mit.edu/teppei/www/research/mediationR.pdf 28



http://imai.princeton.edu/software/mediation.html
http://web.mit.edu/teppei/www/research/mediationR.pdf

Weighting Method

High SES
Ti — 1

Low SES
Ti == O

Maternal speech is SES is high
M;(1)

E[Y(1,M(1))]
I
E[Y|T = 1]

Maternal speech is SES is high
M;(0)

E[Y(1,M(0))]
I
E[WY|T = 1]

E[Y(0,M(0))]
I
E[Y|T = 0]

Pr(M =m|T = 0,X = x)

" Pr(M =m|T = 1,X = x)

Hong (2010, 2015); Hong et al. (2011, 2015); Hong and Nomi, 2012; Huber (2014); Lange
et al. (2012); Lange et al. (2014); Tchetgen Tchetgen and Shpitser (2012); Tchetgen

Tchetgen (2013)

Software “RMPW” could be downloaded from: himsoft.net/ghong
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Thank you!

Contact: xugin@uchicago.edu



