Putting Big Data & Analytics to Work!

Prof. dr. Bart Baesens

Department of Decision Sciences and Information Management, KU Leuven (Belgium)

School of Management, University of Southampton (United <u>Bart.Baesens@kuleuven.be</u> Twitter/Facebook/YouTube: DataMiningApps <u>www.dataminingapps.com</u>

Presenter: Bart Baesens

- Studied at KU Leuven (Belgium)
 - Business Engineer in Management Informatics, 1998
 - PhD. in Applied Economic Sciences, 2003
- PhD. : Developing Intelligent Systems for Credit Scoring Using Machine Learning Techniques
- Professor at KU Leuven, Belgium
- Lecturer at the University of Southampton, UK
- Research: Big Data & Analytics, Credit Risk, Fraud, Marketing, ...
- YouTube/Facebook/Twitter: DataMiningApps
- <u>www.dataminingapps.com</u>
- Bart.Baesens@kuleuven.be

Example Publications

Is Your Company Ready for HR Analytics? HR analytics is the next big change in human resources management. activevoice.us

WILEY

Living in a Data Flooded World!

The Analytics Process Model

Feel the vibe!

Example: marketing context

Analytics

- Term often used interchangeably with data science, knowledge discovery, ...
- Essentially refers to extracting useful business patterns and/or mathematical decision models from a preprocessed data set
- **Predictive analytics**
 - Predict the future based on patterns learnt from past data
 - Classification (churn, response) versus regression (CLV)
- <u>Descriptive analytics</u>
 - Describe patterns in data
 - Clustering, Association rules, Sequence rules

Analytic Model requirements

Business relevance

- Solve a particular business problem

Statistical performance

- Statistical significance of model
- Statistical prediction performance

• Interpretability + Justifiability

- Very subjective (depends on decision maker), but CRUCIAL!
- Often need to be balanced against statistical performance

Operational efficiency

- How can the analytical models be integrated with campaign management?

Economical cost

- What is the cost to gather the model inputs and evaluate the model?
 Is it worthwhile buying external data and/or models?

<u>Regulatory compliance</u>

 In accordance with regulation and legislation

Post processing

- Interpretation and validation of analytical models by business experts
 - Trivial versus unexpected (interesting?) patterns
- Sensitivity analysis
 - How sensitive is the model wrt sample characteristics, assumptions and/or technique parameters?
- Deploy analytical model into business setting
 - Represent model output in a user-friendly way
 - Integrate with campaign management tools and marketing decision engines
- Model monitoring and backtesting
 - Continuously monitor model output
 - Contrast model output with observed numbers

Two Analytical Disconnects

Data versus Data Scientist

- Data: unstructured, distributed, noisy, time-evolving
- Data Scientist: patterns in data, statistical significance, predictive power, structure the unstructured!

Data Scientist versus Business Expert

- Data Scientist: decision trees, logistic regression, random forests, area under ROC curve, top decile lift, R-squared, etc.
- Business Expert: customers, marketing campaigns, risk mitigation, portfolios, profit, return on Investment (ROI), etc.

Visual Analytics as a mediator!

The Power of Visual Analytics

Charles Minnard, 1869

Visual Analytics versus the Analytics Process Model

Data preprocessing

- Use Visual Analytics to find outliers, missing values, frequent/suspicious/interesting patterns, etc.
- Visualisation unit: <u>Data</u>!
- Model representation
 - Use Visual Analytics to represent models in a userfriendly way
 - Visualisation unit: <u>Model formula</u>!

Visual Analytics versus the Analytics Process Model

- <u>Model usage</u>
 - Use Visual Analytics to integrate models with other applications (e.g. GIS)
 - Visualisation unit: <u>Model interaction</u>!
- <u>Model backtesting</u>
 - Use Visual Analytics to monitor model performance
 - Visualisation unit: <u>Model performance</u>!

Data Preprocessing: cluster plot

http://blog.gramener.com/18/visualising-securities-correlation

Model Representation: Scorecards

	Characteristic Name	Attribute	Scorecard Points
	AGE 1	Up to 26	100
	AGE 2	26 - 35	120
P(Good Age, Gender, Salary)	AGE 3	35 - 37	185
1	AGE 4	37+	225
	GENDER 1	Male	90
$1 + e^{-(\beta_0 + \beta_1 Age + \beta_2 Gender + \beta_3 Salary)}$	GENDER 2	Female	180
	SALARY 1	Up to 500	120
	SALARY 2	501-1000	140
	SALARY 3	1001-1500	160
	SALARY 4	1501-2000	200
	SALARY 5	2000+	240

Baesens, Rösch, Scheule, Credit Risk Analytics, Wiley, 2016.

Model Representation: Nomogram

Model Representation

- Bridge the gap between the analytical model and the business user
- Minimize information loss between analytical model and visual representation
- Business user engagement to foster trust
- Note: model interpretability depends upon business application
 - Credit risk versus medical diagnosis
 - Fraud detection versus fraud prevention

Model Representation: Decision Tables

RULE1: IF Avg Usage < 25 AND Internet Plan = Y AND Service Calls > 3 THEN Churn

RULE2: IF Avg Usage < 25 AND Internet Plan = N THEN Churn

RULE3: IF Avg Usage ≥ 25 AND Internet Plan = Y THEN Not Churn

RULE4: IF Avg Usage < 25 AND Service Calls ≤ 3 THEN Not Churn

Rule Conflicts? Baesens, Van Vlasselaer, Verbeke, 2015.

Model Representation: Decision Tables

1. Avg Usage	< 25					≥ 25			
2. Internet Plan		Y	N		Y		Ν		
3. Service Calls	≤ 3	> 3	≤ 3	> 3	≤ 3	> 3	≤ 3	3	
1. Churn	-	х	х	х	-	-	-	-	
2. Not Churn	х	-	х	-	х	х	-	-	
Contributing Rule(s): R4 R1 R2 R2 R3 R3 R4									
Conflict!						No coverage			

Model Usage: Geospatial plots

https://public.tableau.com/en-us/s/gallery/district-columbia-crimespotting

Model Usage: Segmentation

www.dataminingapps.com

Google Analytics

Model Backtesting: Traffic Light Indicator Approach

PD	Baa1	Baa2	Baa3	Ba1	Ba2	Ba3	B1	B 2	B3	Caa-C	<u>Av</u>
	<u>0.26%</u>	<u>0.17%</u>	<u>0.42%</u>	<u>0.53%</u>	<u>0.54%</u>	<u>1.36%</u>	<u>2.46%</u>	<u>5.76%</u>	<u>8.76%</u>	20.89%	<u>3.05%</u>
DR	Baa1	Baa2	Baa3	Ba1	Ba2	Ba3	B1	B 2	B3	Caa-C	Av
1993	0.00%	0.00%	0.00%	0.83%	0.00%	0.76%	3.24%	5.04%	11.29%	28.57%	<u>3.24%</u>
1994	0.00%	0.00%	0.00%	0.00%	0.00%	0.59%	1.88%	3.75%	7.95%	5.13%	<u>1.88%</u>
1995	0.00%	0.00%	0.00%	0.00%	0.00%	1.76%	4.35%	6.42%	4.06%	11.57%	<u>2.51%</u>
1996	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.17%	0.00%	3.28%	13.99%	0.78%
1997	0.00%	0.00%	0.00%	0.00%	0.00%	0.47%	0.00%	1.54%	7.22%	14.67%	<u>1.41%</u>
1998	0.00%	0.31%	0.00%	0.00%	0.62%	1.12%	2.11%	7.55%	5.52%	15.09%	<u>2.83%</u>
1999	0.00%	0.00%	0.34%	0.47%	0.00%	2.00%	3.28%	6.91%	9.63%	20.44%	<u>3.35%</u>
2000	0.28%	0.00%	0.97%	0.94%	0.63%	1.04%	3.24%	4.10%	10.88%	19.65%	<u>3.01%</u>
2001	0.27%	0.27%	0.00%	0.51%	1.38%	2.93%	3.19%	11.07%	16.38%	34.45%	<u>5.48%</u>
2002	1.26%	0.72%	1.78%	1.58%	1.41%	1.58%	2.00%	6.81%	6.86%	29.45%	<u>3.70%</u>
Av	<u>0.26%</u>	<u>0. 17%</u>	0.42%	0.53%	0.54%	<u>1.36%</u>	2.46%	5.76%	8.76%	20.9%	<u>3.05%</u>

Baesens, Rösch, Scheule, Credit Risk Analytics, Wiley, 2016.

Model Backtesting: Traffic Light Indicator Approach

Green	everything is okay
Yellow	decreasing performance, which can be interpreted as an early warning
Orange	performance difference that should be closely monitored
Red	severe problem

Colors can be defined based on p-values.

- p-value less than 0.01 = red
- p-value between 0.01 and 0.05 = orange
- p-value between 0.05 and 0.10 = yellow
- p-value higher than 0.10 = green

Baesens, Rösch, Scheule, Credit Risk Analytics, Wiley, 2016.

Visualing Temporal Patterns

• E.g. Churn Prediction in Telco

Homophily!

Conclusions

- Be aware but critical about emerging technologies (e.g. deep learning)
- Validation of patterns is key!
- Profit driven analytics (TCO and ROI)
- Visual analytics

Courses

- Analytics: Putting it all to Work (1 day) <u>https://support.sas.com/edu/schedules.html?ctry=us&id=1339</u>
- Advanced Analytics in a Big Data World (3 days) <u>https://support.sas.com/edu/schedules.html?ctry=us&id=2169</u>
- Credit Risk Modeling (3 days) <u>https://support.sas.com/edu/schedules.html?ctry=us&id=2455</u>
- Fraud Analytics using Descriptive, Predictive and Social Network Analytics (2 days) <u>https://support.sas.com/edu/schedules.html?ctry=us&id=1912</u>

More Information

E-learning course: Advanced Analytics in a Big Data World

https://support.sas.com/edu/schedules.html?id=2169&ctry=US

The E-learning course starts by refreshing the basic concepts of the analytics process model: data preprocessing, analytics and post processing. We then discuss decision trees and ensemble methods (random forests), neural networks, SVMs, Bayesian networks, survival analysis, social networks, monitoring and backtesting analytical models. Throughout the course, we extensively refer to our industry and research experience. Various business examples (e.g. credit scoring, churn prediction, fraud detection, customer segmentation, etc.) and small case studies are also included for further clarification. The E-learning course consists of more than 20 hours of movies, each 5 minutes on average. Quizzes are included to facilitate the understanding of the material. Upon registration, you will get an access code which gives you unlimited access to all course material (movies, quizzes, scripts, ...) during 1 year. The E-learning course focusses on the concepts and modeling methodologies and not on the SAS software. To access the course material, you only need a laptop, iPad, iPhone with a web browser. No SAS software is needed.

More Information

E-learning course: Fraud Analytics

https://support.sas.com/edu/schedules.html?ctry=us&id=1912

This new E-learning course will show how learning fraud patterns from historical data can be used to fight fraud. To be discussed is the use of descriptive analytics (using an unlabeled data set), predictive analytics (using a labeled data set) and social network learning (using a networked data set). The techniques can be applied across a wide variety of fraud applications, such as insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, counterfeit, etc. The course will provide a mix of both theoretical and technical insights, as well as practical implementation details. The instructor will also extensively report on his recent research insights about the topic. Various real-life case studies and examples will be used for further clarification.

More information

E-learning course: Credit Risk Modeling

https://support.sas.com/edu/schedules.html?ctry=us&id=2455

The E-learning course covers both the basic as well some more advanced ways of modeling, validating and stress testing Probability of Default (PD), Loss Given Default (LGD) and Exposure At Default (EAD) models. Throughout the course, we extensively refer to our industry and research experience. Various business examples and small case studies in both retail and corporate credit are also included for further clarification. The E-learning course consists of more than 20 hours of movies, each 5 minutes on average. Quizzes are included to facilitate the understanding of the material. Upon registration, you will get an access code which gives you unlimited access to all course material (movies, quizzes, scripts, ...) during 1 year. The course focusses on the concepts and modeling methodologies and not on the SAS software. To access the course material, you only need a laptop, iPad, iPhone with a web browser. No SAS software is needed. See https://support.sas.com/edu/schedules.html?ctry=us&id=2455 for more details.