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1 Introduction

The word ”copula” as a grammatical term for a word or expression that links a subject and predicate, Sklar

felt that this would make an appropriate name for a function that links a multidimensional distribution to its one-

dimensional margins, and used it as such. The history of copulas may be said to begin with Frechet (1951). Frechet’s

problem: given the distribution fuctions Fj with j = 1, ..., d of d r.v’s X1, X2, ..., Xd defined on the same probability

space (Ω,F ,P), what can be said about the set Γ(F1, F2, ..., Fd) of the d−dimensional distribution functions whose

marginals are the given Fj?

H ∈ Γ(F1, ..., Fd)⇔ H(+∞, ...,+∞, t,+∞, ...,+∞) = Fj(t) (1)

The set Γ(F1, ..., Fd) is called the Frechet class of the F ′js. Notive Γ(F1, ..., Fd) 6= ∅ since, if X1, X2, ..., Xd are

independent, then

H(x1, x2, ..., xd) =

d∏
j=1

Fj(xj)

But, it was not clear which the other elements of Γ(F1, ..., Fd) were. Dall’ Aglio (1972) studied the conditions

under which there is just one distribution function belonging to Γ(F1, F2). At the end of the nineties, the notion of

copulas became increasingly popular due to an explosive development of quantitative risk management methodology

within finance and insurance. Two papers more than any others put the fire to the fuse: Embrechts et al.(2002)

and Li credit portfolio model(Li2001).

When a r.v X = (X1, X2, . . . , Xd)
T is given, two problems are interesting:

1. the probabilistic behaviour of each one of its components

2. the relationship among them

The main goal of the study is to show how copulas allow to answer the second question. The outline of this

report is as follows. In section 2 we introduced some definitons and classical copula models where we performed

several simulation studies and presented the densities of some copula in graphic. Then we talked about some possible

ways to estimate copula in section 3. For bivariate case, we illustrated a parametric method using piesewise linear
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approximation which is explained in section 4. At last, in section 5, we applied the methods introduced in previous

sections to dietary intake and compared the results.

2 Copula Definitions and Classical Copula models

In this section, we give some fundamental definitions regarding copula and introduce some important classes of

copulas.

2.1 Basic definitions and examples

Definition 2.1. A d-dimensional copula C : [0, 1]d −→ [0, 1] is a function which is a cumulative distribution function

with uniform marginals.

Theorem 2.2. (Sklar1959) Consider a d-dimensional cdf H with marginals F1, ..., Fd. There exists a copula C,

such that

H(x1, ..., xp) = C(F1(x1), ..., Fd(xd)) (2)

for all xi ∈ R̄. If Fi is continuous for all i = 1, ..., d then C is unique; otherwise C is uniquely determined only on

RanF1 × · · · ×RanFd, where RanFi denotes the range of the cdf Fi .

Theorem 2.3. (Rank invariant) Let X = (X1, ..., Xd) be a r.v. with continuous H , univariate marginals

F1, F2, ..., Fd , and copula C. Let T1, ..., Td be strictly increasing functions fromR toR . Then C is also the copula

of (T1(X1), T2(X2), ..., Td(Xd)).

A direct consequence of Theorem 2.3 is that copula properties are invariant under strictly increasing transfor-

mations of the underlying random variables. This seems, at first sight, to be counterintuitive because monotone

transformations of course will change the dependence. But after removing the effect of the marginals we end up

with the same dependence structure. Consider the following example.

> rgumbelCopula(500,alpha=2)->rgum

> qnorm(rgum[,1])->norm1

> qnorm(rgum[,2])->norm2
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> qexp(rgum[,1])->exp1

> qexp(rgum[,2])->exp2

> par(mfrow=c(2,2),mar=c(4,3,3,2)+0.5)

> plot(norm1,norm2,cex=0.5,xlab="x1",ylab="y1", main="Margin N(0,1)")

> plot(exp1,exp2,cex=0.5,xlab="x2",ylab="y2",main="Margin Exp(1)" )

> plot(rgum,cex=0.5,xlab="u1",ylab="v1",main="Copula for x1 and y1" )

> plot(rgum,cex=0.5,xlab="u2",ylab="v2",main="Copula for x2 and y2")
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2.2 The Frechet-Hoeffding Bound

Definition 2.4. For any u = (u1, . . . , up)
T ∈ [0, 1]p , the functions Mp ,Πp and Wp defined as follows:

Mp(u) = min1≤i≤p{ui}

Πp(u) = u1 × · · · × up

Wp(u) = max

{
p∑
i=1

ui − p+ 1, 0

}

Mp and Πp are copulas for any p ≥ 2 . But Wp is only a copula for p = 2. Hoeffding and Frechet independently

derived that a copula always lies in between certain bounds. The reason for this is the existence of some extreme

cases of dependency. Before moving to Frechet-Hoeffding’s Bound theorem, let us first consider some extreme cases

of dependency to get a little insights.

Example 2.1. Consider U1 and U2 are uniform random variables. When U1 = U2, the two variables are extremely

dependent on each other. In this case, the copula for (U1, U2) is

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) = min(u1, u2) (3)

Random variables of this kind are called comonotonic.

Next we consider a contrary example to the above.

Example 2.2. Assume U2 = 1− U1, then the related copula is

C(u1, u2) = P (U1 ≤ u1, 1− U1 ≤ u2) = P (1− u2 ≤ U1 ≤ u1) = u1 + u2 − 1 (4)

and 0 otherwise.

Random variables of this kind are called countermonotonic.

Note that copulas in example 2.1 and 2.2 do not have copula densities as they both involve a kink therefore are

not differentiable. One has mass only on the diagonal u1 = u2 and the other on u2 = 1− u1 . People will naturally

consider extend the ideas to multidimentional case. A comonotonic copula exists in any dimension d but there is
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no countermonotonic copula when d ≥ 3 . To see this, consider random variables X1, X2 and X3. When we set X1

to be countermonotonic to both X2 and X3, this meanwhile restrict relation between X2 and X3. More specifically,

when X1 increases, both X2 and X3 have to increase, so they can not be countermonotonic again. On the other

hand, even a countermonotonic copula does not exist, the bound in the following theorem still holds. See more

details, including geometrical interpretations in Mikusinski, Sherwood, and Taylor (1992).

Theorem 2.5. For any copula C(u) = C(u1, u2, ..., ud)

max

{
d∑
i=1

ui + 1− d, 0

}
≤ C(u ≤ min(u1, u2, ..., ud) (5)

2.3 Classes of Copulas

We will in this section discuss copulas derived from some typical multivariate distributions. In this ways, we

categorize copulas according to the distributions they are derived from. For example, the multivariate normal

distribution will lead to Gaussian copula and the multivariate Student t-distribution leads to the t-copula.

2.3.1 Elliptical Copulas

It is natural to define elliptical copulas as copulas from elliptical distributions. Elliptical distributions share many

tractable properties of the multivariate normal distribution. Simulation from elliptical copulas is easy because

simulation from elliptical distributions is easy.

Definition 2.6. Gaussian Copulas are copulas with the form

CGaR (u) = ΦnR(Φ−1(u1), ...,Φ−1(up)) (6)

where ΦnR denotes the joint distribution function of the d−variate standard normal distribution function with linear

correlation matrix R and Φ−1 denotes the inverse of the distribution function of the univariate standard normal

distribution.
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When d = 2, equation 6 is written as

CGaR (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

{
−s

2 − 2ρst+ t2

2(1− ρ2)

}
dsdt (7)

where R =

 1 ρ

ρ 1

 .

Assume

T = dµ+
Z√
S/ν

(8)

with µ ∈ Rd, S ∼ χ2
ν and Z ∼Nd(0,Σ) are independent, then T is a d−variate tν−distribution with mean µ

and covariance matrix ν
ν−2Σ (for ν > 2) . If ν ≤ 2, the covariance matrix of T is not defined.

Definition 2.7. T-copulas are copulas with form

Ctν,R(u) = tdν,R(t−1
ν (u1), ..., t−1

ν (un)) (9)

where Rij =
Σij√
ΣiiΣjj

for i, j ∈ {1, ..., d} and tdν,R is the distribution function of Y√
S/ν

with S ∼ χ2
ν and Y ∼Nd(0, R)

are independent. Here tν is the (equal) margins of tnν,R, i.e. the distribution fuction of Y√
S/ν

.

When d = 2 , equation 9 can be written as

Ctν,R(u, v) =

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π
√

1− ρ2

{
1 +

s22ρst+ t2

ν(1− ρ2)

}− ν+2
2

dsdt (10)

where R =

 1 ρ

ρ 1

 .

The following figure shows the densities of Gaussian copula and a Student t-copula. All have correlation coeffi-

cient ρ = 0.3. As it can be seen that when ν gets larger, Student t-copula is getting close to Gaussian copula. Also,

the behaviour at the four corners is different from the Gaussian copula while they are similar in the center. It indi-

cates that although having the same correlation, the extreme cases (four cornor points) are much more pronounce

under t-copula. Consider a finance situation where the random variables describe losses of the protfolio, density at

the (0, 0) correspond to big losses in both entities of the portfolio. The fact that t-copula is able to model such
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extreme cases is due to the tail-dependence (Def 2.18 2.19 and 2.20 ).
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If we fix ν in t-copula, the following figure shows how the density will change with its mixing nature in bivariate
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case.
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When ρ = 0 ,

the density rises up at all four corners symmetrically. Introducing some correlation changes this probability. As

the correlation increasing, it is more likely to have values with the same sign which can be easily observed from the

peaks at the (0, 1) and (1, 0) corners.

2.3.2 Archimedean Copulas

As mentioned before that since simulation from elliptical distributions is easy, so is simulation from elliptical copulas.

However elliptical copulas do not have closed form expressions and are restricted to have radial symmetry(C = C̃).
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Take bivariate case as example, the density at (0, 0) and (1, 1) are the same but in many finance and insurance

applications it is more reasonable that there is a stronger dependence between big losses (e.g. a stock market

crash) than between big gains. Elliptical copulas miss to catch the asymmetries. In this section we will discuss an

important class of copulas called Archimedean copulas whcih can be stated directly and have a neat form. Also

allowing for a great variety of different dependence structures makes Archimedean copulas more attractive. We

wiill just present general definition and a short discussion about Archimedean copulas. More about the topic may

be found in Nelsen(1999).

Definition 2.8. Let φ : [0, 1] −→ [0,∞) be a strict decreasing function function that satisfies φ(0) =∞ and φ(1) = 0.

Suppose its inverse φ−1 is completely monotonic on [0,∞). Then an Archimedean Copula is defined as

C(u1, ..., ud) = φ−1 (φ(u1) + ...+ φ(ud)) (11)

Definition 2.9. Let the generator function φ(u) = θ−1(u−θ − 1). A Clayton Copula is defined as

CClθ (u1, u2, ..., ud) =

[
d∑
i=1

u−θi − d+ 1

]− 1
θ

, with θ > 0 (12)

Definition 2.10. let the generator function be

φ(u) = −log
[
exp(−θu)− 1

exp(θ)− 1

]
(13)

A Frank Copula is defined as

CFrθ (u1, u2, ..., ud) =
1

θ
log

{
1 +

∏d
i=1[exp(−θui)− 1]

[exp(−θ)− 1]m−1

}
(14)

with θ ∈ R\{0} for d = 2 and θ > 0 for d ≥ 3.

Definition 2.11. Let the generator fuction φ(u) = (−logu)θ. A Gumbel Copula is defined as

CGuθ (u1, u2, ..., ud) = exp

−
[

d∑
i=1

(−logui)θ
] 1
θ

 with θ > 1 (15)
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2.4 Measures of Dependence

Measures of dependence are common instruments to summarize a complicated dependence structure in a single

number (in bivariate sase). In this section we discuss three important measures of dependence for random vector

(X,Y )T . For this, we mainly follow Paul Embrechts, Filip Lindskog and Alexander McNeil (2001). Proofs an

further details can be found therein.
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Definition 2.12. Linear correlation is defined as

ρ(X,Y )
.
=

Cov(X,Y )√
V ar(X)V ar(Y )

(16)

where Cov(X,Y ) = E(XY )− E(X)E(Y ).

Unfortunately, correlation is only a suitable measure in a special class of distributions, i.e. elliptical distributions.

This class includes the normal distribution and mixtures of normal distributions. It is well known, that outside this

class the linear correlation coefficient is inappropriate and often misleading. The two other dependence measures

to be considered are rank correlation and the coefficients of tail dependence. Both measures are general enough to

give sensible measures for any dependence structure. Also they perhaps provide the best alternatives to the linear

correlation coeffcient as a measure of dependence for nonelliptical distributions.

Definition 2.13. Kendall’s tau is defined as

τ(X,Y ) = P
{

(X − X̃)(Y − Ỹ ) ≥ 0
}
− P

{
(X − X̃)(Y − Ỹ ) < 0

}
(17)

where (X̃, Ỹ )T is an independent copy of (X,Y )T .

It can be seem that Kendall’s tau for (X,Y )T is the probability of concordance minus the probability of discor-

dance.

Theorem 2.14. Let Q denote the difference between the probability of concordance and discordance of (X,Y )T and

(X̃, Ỹ )T , i.e

Q = P
{

(X − X̃)(Y − Ỹ ) > 0
}
− P

{
(X − X̃)(Y − Ỹ ) < 0

}
(18)

Let (X,Y )T and (X̃, Ỹ )T be independent vectors of continuous random variables with joint distribution functions

H and H̃, respectively, with common margins F (of X and X̃) and G (of Y and Ỹ ). C and C̃ are the copulas of

(X,Y )T and (X̃, Ỹ ) respectively, so that H(x, y) = C(F (x), G(y)) and H̃(x, y) = C̃(F (x), F (y)). Then

Q = Q(C, C̃) = 4

∫ ∫
[0,1]2

C̃(u, v)dC(u, v)− 1 (19)

See Paul(2001) for proof.
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The following theorem indicates the relation between Kendall’s tau for (X,Y )T and its copula C.

Theorem 2.15. Let (X,Y )T be a vector of continuous random variables with copula C. Then Kendall’s tau for

(X,Y )T is given by

τ(X,Y ) = Q(C,C) = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1 = 4E(C(U, V ))− 1 (20)

Definition 2.16. Spearman’s rho is defined as

ρs(X,Y ) = 3
(
P
{

(X − X̃)(Y − Y ′) > 0
}
− P

{
(X − X̃)(Y − Y ′) < 0

})
(21)

where (X,Y )T , (X̃, Ỹ )T and (X ′, Y ′)T are independent copies.

Theorem 2.17. Let (X,Y )T be a vector of continuous random variables with copula C. The Spearman’s rho for

(X,Y )T is given by

ρs(X,Y ) = 3Q(C,Π) = 12

∫ ∫
[0,1]2

uvdC(u, v)− 3 = 12

∫ ∫
[0,1]2

C(u, v)dudv − 3 (22)

Eq 20 & 22 will be used to get moment estimator for parametric copulas.

There is a concept that is relevant to the study of dependence between extreme values named tail dependence.

We are not going deep into this topic but state some basic definitions and results.

Definition 2.18. Let (X,Y )T be a vector of continuous random variables with marginal distribution functions F

and G. The coefficient of upper tail dependence of (X,Y )T is

λU
.
= lim

u↑1
P
{
Y > G−1(u) | X > F−1(u)

}
(23)

provided that the limit λU ∈ [0, 1] exists. If λU ∈ (0, 1] , X and Y are said to be asymptotically dependent in the

upper tail; if λU = 0 , X and Y are said to be asymptotically independent in the upper tail.

It is not straightforward to see from Eq 23 that it is a concept of copula. An alternative and equivalent definition

(for continuous random variables) which can be found in Joe (1997), p. 33. is the following.
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Definition 2.19. If a bivariate copula C is such that

λU
.
= lim

u↑1

1− 2u+ C(u, u)

1− u
(24)

exists, them C has upper tail dependence if λU ∈ (0, 1], and upper tail independence if λU = 0.

Similarly the lower tail dependence can be defined.

Definition 2.20. If the limit λL
.
= lim

u↓0
C(u,u)
u exiasts, then C has lower tail dependence if λL ∈ (0, 1] and lower tail

independence if λL = 0

More discussions about tail dependence can be found in Paul Embrechts, Filip Lindskog and Alexander Mc-

Neil,(2001).

3 Copula Estimation

3.1 Parametric Estimation of Copula

Suppose that observation X1 = (X11, ..., X1p)
T ,...,Xn = (Xn1, ..., Xnp)

T iid∼ F(θ,η) with copula Cθ and margins

F1η, ..., Fpη where θ is a parameter for the copula and η is a parametric for margins. Then,

F(θ,η)(x1, .., xp) = Cθ(F1η(x1), ..., Fpη(xp). (25)

Assume Cθ and F(θ,η) are absolutely continuous with their densities Cθ and f(θ,η) and marginal densities

f1η, ..., fpη. Then,

f(θ,η)(x1, .., xp) =
∂ηCθ(F1η(x1), ..., Fpη(xp))

∂F1η(x1)...∂Fpη(xp)
× f1η(x1)× · · · × fpη(xp). (26)

The likelihood of (θ, η) is

L(θ, η) =

n∏
j=1

f(θ,η)(xj1, .., xjp) (27)
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The log-likelihood is

ln(θ, η) =

n∑
j=1

f(θ,η)(xj1, .., xjp) (28)

We can get maximum likelihood estimator (θ̂, η̂).

3.2 Semiparametric Estimation of Copula

• Pseudo-Likelihood

Still assume a parametric copula Cθ but the margins nonparametric since the interest here is on the dependence

structure, i.e. θ. Let Fjn(x) = 1
n

∑n
l=1 I (Xlj ≤ x) be the empirical distribution estimator of Fj . A pseudo (partial)-

likelihood for θ is (Genest, Choahi, Riverst, 1995, Biometrika)

l̃n(θ) =

n∑
l=1

logCθ (F1n(xl1), ..., Fpn(xlp)) (29)

and θ̂ps = argsup
θ

{
l̃n(θ)

}
.

• Method of Moment

It is mostly used in the bivariate one-parameter case (see e.g. Oakes, 1982; Genest, 1987; Genest and Rivest,

1993, and the references therein). It can also sometimes be employed in the multivariate one-parameter and in

the multivariate multiparameter cases. Method-of-moment approaches are based on the inversion of a consistent

estimator of a moment of the copula Cθ. The two best-known moments, Spearman’s rho and Kendall’s tau, are

respectively given by

ρ(θ) = 12

∫
[0,1]2

uvdCθ(u, v)− 3 = 12

∫
[0,1]2

Cθ(u, v)dudv − 3 (30)

τ(θ) = 4

∫
[0,1]2

Cθ(u, v)dCθ(u, v)− 1 (31)
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Let {Rl}nl=1 be the vector of ranks associated with {Xl}nl=1 . If it is bivariate one-parameter case, consistent

estimators of these two moments can be expressed as:

ρn =
12

n(n+ 1)(n− 1)

n∑
i=1

Ri1Ri2 − 3
n+ 1

n− 1
(32)

τn =
4

n(n− 1)

∑
i6=j

I [Xi1 ≤ Xj1] I [Xi2 ≤ Xj2]− 1 (33)

When the functions ρ(θ) and τ(θ) are one-to-one, consistent estimators of θ are given by θnρ = ρ−1(ρn) and

θnτ = τ−1(τn). See Kojadinovic, I. and Yan, J. (2010) for further details about asymptotic representation of those

estimators.

4 Piesewise linear approximation

In this section, we illustrated a method to study bivariate distribution using piesewise normal linear approximation.

4.1 Notations

xi = (xi1, x
i
2, ..., x

i
n) i = 1, 2

zi = (zi1, z
i
2, ..., z

i
n) i = 1, 2

Get zi from xi by: Φ−1(F̂Xi
(xik)) = zik = g−1

i (xik)

The empirical cdf is

F̂Xi
(xik) =

r(k)− 0.326

n+ 0.348

where r(k) is the rank of xik and i = 1, 2 k = 1, ..., n

ψ(·) transformation from ρZ to ρX (i.e. ψ(ρZ) = ρX)

φ(·) & Φ(·) are pdf and cdf for univariate standard normal.
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4.2 Truncated normal moments

According to Johnson1970, the first and second order moments of the doubly truncated variable Z ∈ (a1, a2) are:

µ1(a1, a2) = E(Z) =
φ(a1)− φ(a2)

Φ(a2)− Φ(a1)
(34)

µ2(a1, a2) = E(Z2) = 1 +
a1φ(a1)− a2φ(a2)

Φ(a2)− Φ(a1)
(35)

The probability density function (pdf) of standard binormal distribution with correlation coefficient ρ is

φ(z1, z2;ρ) =
1

2π
√

1− ρ2
exp{− 1

2(1− ρ2)
(z2

1 − 2ρz1z2 + z2
2)} (36)

For double truncation of binormal variable (Z1, Z2) on a two dimentional region D = [a1, a2] × [b1, b2], the

truncated pdf is φ(z1, z2; ρ)/P , where P is the probability of D:

P = P (a1, a2, b1, b2; ρ) =

∫ a2

a1

∫ b2

b1

φ(z1, z2; ρ)dz1dz2

We define P (a, b; ρ) by letting a2 and b2 go to infinity:

P (a, b, ρ) =

∫ ∞
a

∫ ∞
b

φ(z1, z2; ρ)dz1dz2

Regier and Hamdan (1971) derived the first and second order moments using Hermite polynomials, assuming

single truncation on each variable Z1 and Z2. Dimitris and Efthymia further derived the marginal and joint first

moments of (Z1, Z2) ∈ D as

µ1,0 = E(Z1) =
1

P

2∑
i,j=1

(−1)i+j(φ(ai)Q(ai, bj ; ρ) + ρφ(bj)Q(bj , ai; ρ)) (37)
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Similarly, we can get µ0,1 = E(Z2) by swapping the respective truncation points.

µ1,1 = E(Z1Z2) =
1

P

2∑
i,j=1

(−1)i+j(ρP (ai, bj ; ρ)+(1−ρ2)φ(ai, bj ; ρ)+ρaiφ(ai)Q(ai, bj ; ρ)+ρbjφ(bi)Q(bi, aj ; ρ)) (38)

In accordance with Regier and Hamdan (1971),

Q(a, b, ρ) =

∫ ∞
b−ρa√
1−ρ2

φ(u)du

4.3 Piece-wise Linear Approximation

We consider a piece-wise linear function g1with m segments decided by m + 1 points ai, i = 0, ...,m. More

specifically,

X1 =



c10 + c11Z1

c20 + c21Z1

......

cm0 + cm1Z1

if a0 < Z1 ≤ a1

if a1 < Z1 ≤ a2

......

if am−1 < Z1 < am

where c0 = [c10,c20, ..., cm0]T and c1 =[c11, c21, ..., cm1]T are the parameter vectors of constant term and slope,

respectively, of the linear interpolation at the breakpoints. Note that g1 is continuous so the solution for the coeffi-

cients are ci1 = g1(ai)−g1(ai−1)
ai−ai−1

and ci0 = ai − ci1g(ai). Similarly, g2 has parameter vectors d0 = [d10, d20, ..., dp0]T

and d1 = [d11, d21, ..., dp1]T . We define a partition A of the domain of X1 by

A = {Ai = g1(z1) with z1 ∈ (ai−1, ai] | i = 1, ...,m}

The single moments of X1with order k then is :

E(Xk
1 ) =

m∑
i=1

E(Xk
1 | X1 ∈ Ai)Pr(X1 ∈ Ai)
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E(X1) =

m∑
i=1

(ci0 + ci1µ1;ai)Pai

E(X2
1 ) =

m∑
i=1

(c2i0 + 2ci0ci1µ1;ai + c2i1µ2;ai)Pai

where Pai = Pr(ai−1 ≤ Z1 < ai) = Φ(ai)− Φ(ai−1), µ1;ai = µ1(ai−1, ai) and µ2;ai = µ2(ai−1, ai)

For the bivariate case, we denote the partition

D = {Dij = {ai−1 ≤ z1 ≤ ai, bj−1 ≤ z2 ≤ bj} | i = 1, ...,m j = 1, ..., p}

Applying the total probability law in Eq. 8 the first order joint moment of (X1, X2) is

E(X1, X2) =

m∑
i=1

p∑
j=1

E(X1X2 | X1 ∈ Ai ∧ X ∈ Bj)Pr(X1 ∈ Ai ∧ X ∈ Bj)

Notice here

X1 | Ai = ci0 + ci1Z1 ai−1 < Z1 ≤ ai

X2 | Bj = dj0 + dj1Z2 bj−1 < Z2 ≤ bj

So we can get

E(X1X2) =

m∑
i=1

p∑
j=1

(ci0dj0 + ci1dj0µ1,0 + ci0dj1µ0,1 + ci1dj1µ1,1)P

Based on all the reaulte above we can calculate ρX based on piese-wise linear transformation by the following:

ρX = ψ(ρZ) =
cov(X1, X2)√

V ar(X1)V ar(X2)
=

E(X1X2)− E(X1)E(X2)√
EX2

1 − (EX1)2
√
EX2

2 − (EX2)2

4.3.1 Estimation of the normal correlation coefficient

Now we seek the story in another direction that is to solution for ρZ from two non-normal variables X1 and

X2. Suppose (Z1, Z2) ∼ (0, 0, 1, 1, ρZ) and (X1, X2) with marginal cdf FX1
(x1) and FX2

(x2) and with correlation
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coefficient ρX . The cdf and be approximated by emperical cdf based on observations x1 and x2. The transformation

g1 and g2 are as defined before. It was shown in Cario and Nelson (1996) that the correlation transform ρX = ψ(ρZ)

is also monotonic and therefore a solution ρZ = ψ−1(ρX) can be found. Based on the form of ψ, an interative scheme

is provided by D. Kugiumtzis and E. Bora-Senta (2010).

1. Set the breakpoints and compute the coefficients c0, c1,d0,d1 of the piece-wise linear approximation of g1

and g2 as defined in Section 3 which determine the form of ψ(ρZ).

2. Begin with a starting value ρZ,0 ∈ (−1, 1).

3. At each iteration i, compute ρX,i = ψ(ρZ,i) and the difference δρX,i = ρX − ρX,i.

4. If δρX,i < ε the solution is found as ρZ = ρZ,i where ε is an arbitary tolerance. Otherwise update the

approximation of ρZ as

ρZ,i+1 =


ρZ,i + δρX,i

sgn(ρZ,i)min(
|ρZ,i|+1

2 , 2− | ρZ,i + δρX,i |)

if | ρZ,i + δρX,i |< 1

if | ρZ,i + δρX,i |≥ 1

(39)

where sgn(x) is the sign of x . Then go to step 3.

4.3.2 Generation of linearly correlated bivariate samples

Algorithm from D. Kugiumtzis and E. Bora-Senta (2010).

1. Cumpute the sample correlation coefficient rX and marginal cdf F̂X1
(x1) and F̂X2

(x2) of (X1, X2) from the

sample (x1, x2)

2. Compute the normal correlation coefficient rZ of the corresponding bivariate standard normal (Z1, Z2) by D.

Kugiumtzis and E. Bora-Senta’s algorithm.

3. Generate a sample (z1, z2) of (Z1, Z2), i.e. a sample of size n from a bivariate standard normal distribution

with correlation coefficient ρZ .
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4. Transform (z1, z2) to (x∗1, x∗2) as

x∗i =F̂−1
X1

(Φ(zi))

5 Apply to nutrition measurement data

5.1 Data description

In this section, we explore the relationship bwtween two dietary intake variables using methods talked before. The

two variables are energy intake and vitamin C intake. There are 571 observations for each.

We choose to be ρZ0 = cor(x1, x2).

5.2 Dependence structure exploration

We estimated the copula with both parametric and non-parametric method. Two parametric copulas, t copula and

normal copuls are applied. Other than that, the following two non-parametric methods are also used.

• Empirical estimator proposed by Deheuvels (1979):

C̃(u, v) =
1

n

n∑
i=1

I
(
Ûi ≤ u, V̂i ≤ v

)
(40)

where Ûi = 1
n

∑n
j=1 I (Xj1 ≤ Xi1) and V̂i = 1

n

∑n
j=1 I (Xj2 ≤ Xi2).

• A two-stage kernel estimator (Chen and Huang 2007)

As copulas are not directly observable, a nonparametric copula estimator has to be formed in two stages: estimate

the two marginals (F1(X1), F (X2)) first and then estimate the copula based on the estimated marginals. Let K be

a symmetric probability density supported on [−1, 1] and G(x) =
∫ x
−∞K(t)dt be the distribution of K. In the first

stage the marginal distribution Fl is estimated by

F̂l(x) =
1

n

n∑
i=1

G

{
x−Xil

bl

}
(41)
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with a bandwidth bl for l = 0, 1, 2; see Bowman, Hall & Prvan (1998) for details on this kernel distribution

estimator. A estimator of C(u, v) is

1

n

n∑
i=1

G

(
u− F̂1(Xi1)

h

)
G

(
v − F̂2(Xi2)

h

)
. (42)

The estimator considered by Chen (2007) is of above form based on the local linear kernels Ku,h which can be

used to prevent the boundary bias.

> par(mfrow=c(2,2),mar=c(1,2,1,1)+1)

> contour(u,v,z0.5,main="b=1e-07, h=0.5")

> contour(u,v,zga,main="Normal Copula")

> contour(u,v,zt,main="T Copula")

> contour(u,v,empest,main="Emprical Copula")
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> par(mfrow=c(2,2),mar=c(1,2,1,1)+1)

> contour(u,v,z0.6,main="b=1e-07, h=0.6")

> contour(u,v,z0.7,main="b=1e-07, h=0.7")

> contour(u,v,z0.8,main="b=1e-07, h=0.8" )

> contour(u,v,z0.9,main="b=1e-07, h=0.9")

25



b=1e−07,  h=0.6

 0.18  0.2 

 0.22 

 0.24 

 0.26 
 0.28 

 0.3 

 0.32 

 0.34 

 0.36 

 0.38 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b=1e−07,  h=0.7

 0.16 

 0.18 

 0.2 

 0.22 
 0.24 

 0.26 
 0.28 

 0.3 

 0.32 

 0.34 

 0.36 

 0.38 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b=1e−07,  h=0.8

 0.16 

 0.18 

 0.2 

 0.22 

 0.24 
 0.26 

 0.28 

 0.3 

 0.32 

 0.34 
 0.36 

 0.38 

 0.4 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

b=1e−07,  h=0.9

 0.15 

 0.2 

 0.25 
 0.3 

 0.35 

 0.4 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> par(mfrow=c(2,2),mar=c(1,2,1,1)+1)

> contour(u,v,z1.5,main="b=1e-07, h=1.5")

> contour(u,v,z1.6,main="b=1e-07, h=1.6")

> contour(u,v,z1.0,main="b=1e-07, h=1")

> contour(u,v,z2.0,main="b=1e-07, h=2")
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5.3 Model fitting

We fit copula and piecewise linear approximation models separately with the nutrition measurement data. The

estimated results are for copula are:

[1] "Pseudo-Likelihood estimator for t copula"

rho nu

0.2753902 18.5563999
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[1] "inversion of Kendall's tau"

Estimate Std. Error z value Pr(>|z|)

rho.1 0.2759493 0.04059246 6.798044 1.060494e-11

> rbind(c0,c1)

[,1] [,2] [,3] [,4] [,5] [,6]

c0 68.26921 52.97509 25.52315 -0.5740349 -71.5966 -837.2283

c1 22.22071 91.37781 118.44066 134.4870654 167.2871 461.9189

> rbind(d0,d1)

[,1] [,2] [,3]

d0 1463.8712 1345.5853 -139.2652

d1 443.9166 834.4287 1547.6951

5.4 Generation of bivariate random samples

The summary statistics based on simulated vitc and energy data are shown below.

Min. 1st Qu. Median Mean 3rd Qu. Max.

origional_vic 0.70 26.30 58.10 77.92 105.4 435.6

piecewise_vic 0.70 51.60 69.55 89.64 112.8 435.6

copula_vic 1.31 27.45 59.45 78.91 107.5 435.6

origional_energy 114.00 1074.00 1399.00 1482.00 1806.0 4567.0

piecewise_energy 155.10 1161.00 1515.00 1607.00 1952.0 4567.0

copula_energy 114.00 1054.00 1402.00 1465.00 1743.0 4567.0
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