
Exact and Asymptotic Statistical Tests for Proportion

Difference in One-to-Two Matched Binary Data

Hui Lin ∗, Chong Wang†

November 20, 2014

Abstract Matched observations with dichotomous responses commonly occur in medical and
epidemiological researches. Although standard approaches exist for one-to-one paired binary data
analyses, there is not much work for one-to-two or one-to-N matched binary data in the current
statistical literature. The existing Miettinen’s test assumes that the multiple observations from
the same matched set are mutually independent. In this paper, we propose exact and asymptotic
tests for one-to-two matched binary data. Our method is markedly different from existing
methods in that ours does not rely on a mutual independence assumption. The emphasis on
dependence among observations from the same matched set is natural and appealing, as much in
human health as it is in veterinary medicine. It can be applied to many types of diagnostic
studies with one-to-two matched data structure. Our methods can be generalized to one-to-N
matched case in a straightforward manner.
Keywords: exact test, asymptotic test, matched binary data, diagnostic studies, pooled sample

1 Introduction

Matched observations with dichotomous responses commonly occur in medical and
epidemiological researches. Although standard approaches exist for one-to-one paired binary data
analyses, not much research on one-to-two or one-to-N matched binary data has been published.
Our research was originally motivated by the pooling of diagnostic tests. Often, testing units
one-by-one is inefficient, especially when disease prevalence is sufficiently low. The concept of
screening pooled samples originated during the second world war to detect syphilis in US soldiers
[1]. It has aroused significant amount of attention and been used successfully in various
applications. Many studies have demonstrated the successful use of pooling strategies on HIV
testing [2] [3] [4] [5]. Budget reduction is an important issue which limits the number of tests so
that the derived estimates can be imprecise. One way to overcome budget limitations and improve
the accuracy of estimates is pooled testing. Vansteelandt et al. [6] showed that a good design can
severely reduce cost. An applied example in Vansteelandt et al. [6] showed that using test pools
with an average of seven units reduced cost by 44 percent with virtually no loss in precision. In
some circumstances, the advantages of pooling include earning more accuracy as well[2].
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For the one-to-one case, McNemar [7] developed a test of marginal homogeneity in a 2× 2 table
that is applicable to pair-matched observations or a cohort measured twice on a variable with
binary outcome. Bennett and Underwood [8] compared exact power with the non-central
Chi-square approximation for sample sizes of 10, 20 and 40 and found the Chi-square
approximation to be adequate. Miettinen [9] derived the asymptotic power for testing the
difference between cases and controls with dichotomous response in the case of one to one and one
to R matching. Stephen [10] derived the exact power based on Miettinen’s work and compared it
to the asymptotic power of the test. However, Miettinen’s test assumes that the multiple
observations from the same matched set are mutually independent conditioned on the pair. This
assumption is hard to hold for pooling test data where the pooled sample is of course dependent of
the individual samples being pooled. Furthermore, the independence assumption can be assessed
statistically using Fisher’s exact test and our data show significant evidence of dependence.
We proposed exact and asymptotic tests for one-to-two matched binary data. Our methods fit a
more general situation that does not assume that observations from the same subject are
mutually independent. It can be applied to many types of diagnostic studies with one-to-two
matched data structures besides dual sample pooling, such as one-to-two case control studies. It is
important to understand the properties of matching designs so as to be able to make the best use
of them. Our methods can be generalized to one-to-N matched cases. For clarity of presentation
we establish basic concepts, terminology and notation in Section 2. We illustrate the exact test
procedure and an asymptotic test procedure in Section 3 and Section 4, respectively. In Section
5, we demonstrate the merits of our tests through a simulation study. In Section 6, we applied
our methods on two practical situations that fail to have the independence required by
Miettinen’s test. Discussion follows in Section 7.

2 Basic concepts, Terminology and Notation

Assume we have n subjects going through two strategies of test. By saying one-to-two we mean
there is one binary observation taken from each subject under strategy 1 and two binary
observations taken from the same subject under strategy 2. In the paper, we use upper case
letters to denote random variables and lower case letters to denote observed realizations. We
denote the set of three observations from subject j and its realization as:

(Y1j , Y2j1, Y2j2) and (y1j , y2j1, y2j2)

respectively, where Y1j denotes the observation under strategy 1 while Y2j1 and Y2j2 denote
observations under strategy 2 with j = 1, .., n.
For the jth matched group a realization (y1j , y2j1, y2j2) is obtained for the random response vector
(Y1j , Y2j1, Y2j2). The value of the response variable Y is either 0 or1. And p1 = Pr{Y1j = 1}
(probability a subject under strategy 1 has test result 1) and p2 = Pr{Y2j1 = 1} = Pr{Y2j2 = 1}
(probability a subject under strategy 2 has test result 1). The object of the study is to make
inferences about

δ = p1 − p2,
and test the null hypothesis

H0 : δ = 0

We consider the multinomial distribution of the response vector (X1j , X2j) where X1j = Y1j and

X2j = Y2j1 + Y2j2. There are six possible realizations and denote Z
(j)
kl = I(X1j = k, X2j = l) with
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k = 0, 1 and l = 0, 1, 2 . It is a multinomial distribution with Z
(j)
kl ∼ multi−Bernoulli(pkl) where

pkl = E[Z
(j)
kl ] is invariant across units denoted by j. The cell counts for a total of n sets.

Zkl =
∑n
j=1 Z

(j)
kl has a multinomial distribution with Zkl ∼ multinomial(n, pkl) .

Table 1: Outcome for Subject j
Test 2

Test 1 Z
(j)
12 Z

(j)
11 Z

(j)
10

Z
(j)
02 Z

(j)
01 Z

(j)
00

Table 2: Counting Table for n Sets of Observations
Test 2

2 1 0 Total
Test 1 1 Z12 Z11 Z10 n1.

0 Z02 Z01 Z00 n0.
Total n.2 n.1 n.0 n

2.1 Miettinen Exact Test

Miettinen proposed an exact test for this matching design under the following two assumptions:

1. the n vectors (Y1j , Y2j1, Y2j2) are independently and identically distributed, and that

2. Y1j , Y2j1, Y2j2 are mutually independent conditionally on (π1, π2) = (π1j , π2j) where
p1 = E(π1), p2 = E(π2).

Miettinen [9] proposed an exact test based on the multinomial formulation. Conditioning on
S1 = Z10 + Z01 and S2 = Z11 + Z02, Z10 and Z11 have independent binomial distributions. Under
H0,

Z10 ∼ Binomial(S1,
1

3
);

Z11 ∼ Binomial(S2,
2

3
).

The computation of the p-value for hypothesis testing is: p = Pr(Z10 + Z11 ≥ z10 + z11 = v) i.e.

p =
∑

k1+k2≥v

(
s1
k1

)(
1

3

)k1 (2

3

)s1−k1 ( s2
k2

)(
2

3

)k2 (1

3

)s2−k2
(1)

When Test 1 and Test 2 results are biologically related, as in a pooling test senario, the
assumption of independence between Test 1 and Test 2 may not be reasonable. Paired test
analysis methods such as McNemar’s test do not generally require independence between paired
test results. In the following sections, we discuss statistical tests without the conditional
independence assumption.
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3 Random Exact Test

3.1 Test Statistic

Let R
(j)
kl | Z

(j)
kl ∼ Bin(Z

(j)
kl ,

1
2 ) and Rkl =

∑n
j=1R

(j)
kl . The marginal probability is

Pr{R(j)
kl = 1} = Pr{R(j)

kl = 1 | Z(j)
kl = 1}Pr{Z(j)

kl = 1} = pkl
2 . So for k 6= k′ or l 6= l′,

Pr{Z(j)
k′l′ +R

(j)
kl = 2} = Pr{Z(j)

k′l′ = 1, R
(j)
kl = 1} = 0 (2)

Pr{Z(j)
k′l′ +R

(j)
kl = 1} = Pr{Z(j)

k′l′ = 1, R
(j)
kl = 0}+ Pr{Z(j)

k′l′ = 0, R
(j)
kl = 1}

= Pr{Z(j)
k′l′ = 1}Pr{R(j)

kl = 0 | Z(j)
k′l′ = 1}+ Pr{R(j)

kl = 1}Pr{Z(j)
k′l′ = 0 | R(j)

kl = 1}
= Pr{Z(j)

k′l′ = 1}+ Pr{R(j)
kl = 1} = pk′l′ + pkl

2

(3)

Pr{Z(j)
k′l′ +R

(j)
kl = 0} = 1− Pr{Z(j)

k′l′ +R
(j)
kl = 1} = 1− (pk′l′ −

pkl
2

) (4)

Then we have
∑n
j=1(Z

(j)
k′l′ +R

(j)
kl ) = Zk′l′ +Rkl ∼ Bin(n, pk′l′ + pkl

2 ), for any (k, l) 6= (k
′
, l
′
).

δ = E(X1j)− E(X2j)
2

= (p12 + p11 + p10)− (p12 + p02 + 1
2p11 + 1

2p01)
= p10 − 1

2p01 + 1
2p11 − p02

(5)

Denote S = Z10 +R11 + Z02 +R01 and ps = p10 + p11
2 + p02 + p01

2 . Under H0:
p10 + 1

2p11 = p02 + 1
2p01, we have Z10 +R11 | S ∼ Bin(S, 12 ). A two-sided Random Exact Test is

done through the following three steps:

1. Random sample r11 |∼ Bin(z11,
1
2 ) and r01 ∼ Bin(z01,

1
2 )

2. Denote s1 = max(z10 + r11, z02 + r01) , s2 = min(z10 + r11, z02 + r01) and
s = z10 + r11 + z02 + r01.

3. Calculate p-value by Pr{x ≤ s2 or x ≥ s1} with x ∼ Bin(s, 12 ).

Due to the randomization of r11, the procedure can give different answers for the exact same data.
We can avoid the arbitrariness of randomization while keeping the beautiful theory of these
procedures by a simple change of viewpoint to what is called a ”fuzzy p-value” advanced by Geyer
& Meeden (2005) [11]. Different from conventional p-values, fuzzy p-values are random variables
interpreted as p-values. In terms of the random exact test illustrated above, r11 is called a latent
variable and the p-value calculated in step 3 is refered to as a latent p-value. The latent p-value
would be a p-value if the values of the latent variable were observed. The exact test employing the
notion of a fuzzy p-value uses simulations of the latent under the null hypothesis. It provides an
expression of both the strength and the uncertainty of the evidence against the null hypothsis.

3.2 Power of the Random Exact Test

For fixed δ, p1, p12 and p11,

p01 = 2 ∗ p1 ∗ (1− p1)− p11 (6)
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p02 = p21 − p12 (7)

p10 = p1 + δ − p12 − p11 (8)

p00 = (1− p1)2 − (p1 + δ − p12 − p11) (9)

We have shown that Z10 +R11 ∼ Bin(n, p10 + p11
2 ) and Z02 +R01 ∼ Bin(n, p02 + p01

2 ).

ps = p10 +
p11
2

+ p02 +
p01
2

= 2p1 + δ − p11 − 2p12 (10)

p10 + p11
2

p10 + p11
2 + p02 + p01

2

=
p1 − p12 − p11

2 + δ

2p1 + δ − p11 − 2p12
≡ q (11)

Then S ∼ Bin(N, ps) and Z10 +R11 | S ∼ Bin(S, q). The unconditional power can be obtained as
the expectation of the conditional power. The power expression of the exact binomial test is ( 12).

Pr{Z10 +R11 ≤ uα/2 or Z10 +R11 ≥ u1−α/2}
=
∑n
S=0 (nS) pSs (1− ps)n−S

∑
Z10+R11≤lα/2,
Z10+R11≥uα/2

(
S
Z10+R11

)
qZ10+R11(1− q)S−(Z10+R11) (12)

where lα/2
.
= max{n |

∑n
x=0(Sx )( 1

2 )S ≤ α
2 } and uα/2

.
= min{n |

∑S
x=n(Sx )( 1

2 )S ≤ α
2 }.

4 Asymptotic Test

Denote T (j) = (Z
(j)
10 +

Z
(j)
11

2 )− (Z
(j)
02 +

Z
(j)
01

2 ).

E[T (j)] = p10 +
p11
2
− p02 −

p01
2

= δ (13)

V ar[T (j)] = E[T (j)2]− {E[T (j)]}2

= E[{(Z(j)
10 +

Z
(j)
11

2 )− (Z
(j)
02 +

Z
(j)
01

2 )}2]− δ2

= E[(Z
(j)
10 +

Z
(j)
11

2 )2 + (Z
(j)
02 +

Z
(j)
01

2 )2 − 2(Z
(j)
10 +

Z
(j)
11

2 )(Z
(j)
02 +

Z
(j)
01

2 )]− δ2
(14)

Since at most one of {Z(j)
10 , Z

(j)
11 , Z

(j)
02 , Z

(j)
01 } is non-zero, Z

(j)
kl Z

(j)
k′l′ = 0 if k 6= k′ or l 6= l′. Also we

have Z
(j)2
kl = Z

(j)
kl . Then ( 14) can be written as ( 15).

V ar[T (j)] = E[Z
(j)2
10 +

Z
(j)2
11

4
+ Z

(j)2
02 +

Z
(j)2
01

4
)]− δ2 = p10 +

p11
4

+ p02 +
p01
4
− δ2 (15)

Since observations from different subjects are independent, we have:

µ = E

n∑
j=1

T (j) = nδ (16)
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σ2 = V ar

n∑
j=1

T (j) = n(p10 +
p11
4

+ p02 +
p01
4
− δ2) (17)

Under H0, By CLT,
∑n
j=1 T

(j)

√
V ar(

∑n
j=1 T

(j))
=

(Z10+
Z11
2 )−(Z02+

Z01
2 )√

n(p10+
p11
4 +p02+

p01
4 )

is asymptotic standard normal when

n is large. The asymptotic test is to compare the following test statistics to N(0, 1).

(Z10 + Z11

2 )− (Z02 + Z01

2 )√
z10 + z11

4 + z02 + z01
4

(18)

When δ 6= 0,
(Z10+

Z11
2 )−(Z02+

Z01
2 )−nδ√

n(p10+
p11
4 +p02+

p01
4 −δ2)

is asymptotic standard normal . The power with respect to

δ is a function of the mean and variance of the test statistic

β = 2Φ(
φα/2

√
n(p10 + p11

4 + p02 + p01
4 )− nδ√

n(p10 + p11
4 + p02 + p01

4 − δ2)
) (19)

where φα/2 is the α/2 lower quantile of standard normal distribution and Φ(·) is the cumulative
density function of standard normal distribution. It is time consuming to compute ( 12) and ( 19)
for large n. Therefore, in the following simulation study, we estimate the power of exact and
asymptotic tests through Monte Carlo sampling.

5 Simulation

We conducted a Monte Carlo study to examine type one error levels and power of the proposed
statistical tests. In particular, we took n = 10, 20, 30, 50, 100, 200, 300. Since the exact power
depend on the individual binomial or multinomial parameters, the arbitary choice of a further
parameter is necessary. We gave arbitary values for p1, p12 , p11 and δ, then the rest parameters
are determined by solving ( 6) - ( 9). We consider different parameterizations according to ( 20) -
( 24).

δ = 0.05 ∗ (h− 1), where h = 1, 2, 3, 4, 5 (20)

For each δ value in ( 20), we simulate sample from four different settings:

Setting 1 : p1 = 0.3, p12 = 0.01, p11 = 0.01 (21)

Setting 2 : p1 = 0.3, p12 = 0.08, p11 = 0.15 (22)

Setting 3 : p1 = 0.4, p12 = 0.15, p11 = 0.24 (23)

Setting 4 : p1 = 0.4, p12 = 0.11, p11 = 0.03 (24)

Note that the 4th setting can only get 3 δ values (i.e δ = 0, 0.05, 0.1) due to the support of
parameter ( [0, 1]). For each case, M = 2000 simulations were performed. Function ”rmultinom()”
in R is used to simulate multinomial samples. As mentioned, it is computationally infeasible to
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Figure 1: Comparison of exact test power and asymptotic test power for setting 1 of one-to-two
case. The numbers in the legend indicate the sample size. AsyTest indicates asymptotic test; Exact
indicates exact test.

calculate ( 12) for large n. Therefore, the power for each test on each sample set was estimated
with 2000 simulations.
The resulting power values of the exact test and the asymptotic test for different
parameterizations are shown in Figure 1 to 4. From the results we can see that the Miettinen’s
Test does not work here. The asymptotic test consistently dominates the others for all settings.
Though for small sample size (n ≤ 30) the performance drops, our proposed tests perform well as
long as the size is larger than 50. As δ increases, the power increases steadily for the exact
binomial test and asymptotic test as we would expect. Miettnen’s test nearly has no power even
the sample size is large except for setting 3. The reason may be that the design of
parameterization for setting 3 approximate the mutually independent situation the most. A full

7



0.00

0.05

0.10

0.00 0.05 0.10 0.15 0.20
delta

R
10 AsyTest
10 Exact
10 MC_Exact
10 Miettinen

0.0

0.1

0.2

0.3

0.00 0.05 0.10 0.15 0.20
delta

R

20 AsyTest
20 Exact
20 MC_Exact
20 Miettinen

0.0

0.1

0.2

0.3

0.4

0.00 0.05 0.10 0.15 0.20
delta

R

30 AsyTest
30 Exact
30 MC_Exact
30 Miettinen

0.0

0.2

0.4

0.6

0.00 0.05 0.10 0.15 0.20
delta

R

50 AsyTest
50 Exact
50 MC_Exact
50 Miettinen

0.00

0.25

0.50

0.75

0.00 0.05 0.10 0.15 0.20
delta

R

100 AsyTest
100 Exact
100 MC_Exact
100 Miettinen

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
delta

R

200 AsyTest
200 Exact
200 MC_Exact
200 Miettinen

0.00

0.25

0.50

0.75

1.00

0.00 0.05 0.10 0.15 0.20
delta

R

300 AsyTest
300 Exact
300 MC_Exact
300 Miettinen

Figure 2: Comparison of exact test power and asymptotic test power for setting 2 of one-to-two
case. The numbers in the legend indicate the sample size. AsyTest indicates asymptotic test; Exact
indicates exact test.

table of parameterization strategy for setting 3 under non-hypothesis is shown in table ??.

6 Application Examples

6.1 Dual Sample Pooling Test

Salmonella enteric serovar Enteritidis (SE) has emerged in the past 30 years as a leading cause of
human salmonellosis in the United States [12, 13]. If SE is isolated from the environment of
chicken houses, then eggs from SE-positive houses must be tested. Testing eggs for SE requires a
large sample size as only a small proportion are contaminated in an infected flock. Therefore,
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Figure 3: Comparison of exact test power and asymptotic test power for setting 3 of one-to-two
case. The numbers in the legend indicate the sample size. AsyTest indicates asymptotic test; Exact
indicates exact test.

environmental sampling is the primary means by which flocks are monitored for SE.
Environmental (or egg) testing has traditionally been carried out using bacterial culturing which
is the standard by which all other tests are compared. Bacteriological culturing typically requires
5 to 7 days before results are obtained. Real-time polymerase chain reaction (RT PCR) is one
testing method that has been developed to decrease the time required for testing. The cost of
testing associated with the implementation of U.S. Food and Drug Administration (FDA) ’s Final
Rule has placed a substaincial burden on producers. Sample pooling is one strategy to reduce
costs and labor. The aim of the study is to examine the validity of an SE-specific RT PCR in
pooled samples. The provisionally approved National Poultry Improvement Plan (NPIP) modified
semisolid Rappaport-Vassiliadis (MSRV) method as the gold standard. RT PCR results from pool
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Figure 4: Comparison of exact test power and asymptotic test power for setting 4 of one-to-two
case. The numbers in the legend indicate the sample size. AsyTest indicates asymptotic test; Exact
indicates exact test.

sizes of two were compared with single sample testing. A total of 208 environmental field samples
were collected from three commercial layer houses on the same site. Houses were previously found
to be positive for SE by culture at the ISU VDL. Each house contained twelve rows of cages with
three tiers of cages within each row. Flocks within each house consisted of adult laying hens.
Gauze drag swabs pre-soaked with sterilized milk mile were used to sample egg belt sections from
each tier of cages within each row and from fecal material on support beams directly under the
cage section sampled. Samples were taken every fifty feet along the length of the house. Swabs
were put into Whirl-Pak bags and transported on ice to the Iowa State University Veterinary
Diagnostic Laboratory for testing. After incubation, 1 ml aliquots were removed from the
enrichment broth of field environmental samples for RT PCR analysis. Sets of pooled samples
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were prepared from these aliquots so that each individual sample was represented once and
randomly assigned to a pooled set of 2 samples (208 individual, 104 pools of two). In this
example, the pooling test is test 1 and the single test is test 2 with n=104. The counting results
are presented in Table 7 .

Table 3: Counting Table for Dual Pooling Test
Test 2

2 1 0 Total
Test 1 1 0 7 0 7

0 0 0 97 97
Total 0 7 97 104

A Fisher’s exact test for independence results in a p-value of 4.707× 10−11, indicating convincing
evidence of dependency between tests in the table. Thus Miettinen’s test should not be applied in
this situation because it is derived under the independence assumption. The probability that the
fuzzy p-value is less than 0.05 is only 0.06. The median fuzzy p-value is 0.25 and the 95% quantile
is 1. The result indicates no evidence against H0.
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Figure 5: Cumulative distribution functions of the fuzzy p-values for Dual Sample Pooling Test
based on 2000 iterations
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6.2 Pen-based oral fluid specimens for influenza A virus detection

Christa K. Goodell et al. used a matched design in their influenza A virus (IVA) monitoring
study. For IAV detection, the traditional ante mortem Nasal Swabs (NS) specimen is difficult and
expensive to get because it is necessary to select, restrain, and swab individual pigs. Alternatively,
oral fluids (OF), a specimen new to swine diagnostics but well-characterized in human
diagnostics, is easy to collect because pigs naturally investigate their environment by chewing.
The question is to compare the probability of detecting IAV in OF and NS specimens collected
from vaccinated pigs. IAV vaccinated pigs were inoculated with subtypes H1N1 or H3N2.
Pen-based oral fluid samples were collected day post inoculation. There were two pigs in each
pen. The OF and NS samples were tested in the laboratory with results to be either negative or
positive. Each OF sample from one pen matches with two NS samples from two individual pigs in
the same pen. The data are as follows:

Table 4: Counting Table for influenza A virus detection
NS

2 1 0 Total
OF 1 114 28 29 171

0 2 7 42 51
Total 116 35 81 222

A Fisher’s exact test for independence results in a p-value < 2.2× 10−16, indicating convincing
evidence of dependency between tests in the table. Thus Miettinen’s test should not be applied in
this situation because it is derived under the independence assumption. The whole distribution of
the fuzzy p-value is concentrated below 0.05. The asymptotic test p-value is 2.71× 10−9. There is
very strong evidence for difference between positive rates of the two tests. OF is better than SN
in terms of both convenience and sensitivity. This example is not a pooling test as the first
example, however, the data also has a matched scheme.

7 Discussion and Conclusion

The simulation results of above work show that Miettinen’s test performs poorly when the
multiple observations from the same matched set are dependent. Except for very small numbers
of matched sets, in general, the results support that both exact and asymptotic test have good
power and control type one error well. Asymptotic test out performs the exact test by
effectiveness and computational speed. The estimated power for the asymptotic test based on
2000 simulated data sets is very close to the calculated results from the power function. The tests
proposed in the present work have rather wide applicability in medical and other research. Both
the exact and the asymptotic versions of our proposed statistical tests can be generalized from
1-to-2 to 1-to-N matched data. A related question arise: does the exact and asymptotic test
remain accurate for N > 2? It is a question worthy of future investigation.
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Figure 6: Cumulative distribution functions of the fuzzy p-values for Pen-based oral fluid specimens
for influenza A virus detection based on 2000 iterations
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