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Abstract

We consider the problem of estimating the joint distribution of two correlated random variables where one is

observed with error. An interest in human nutrition is to estimate the joint distribution of usual energy intake

and usual micronutrient intake. While precise biomarkers for energy consumption are available, there are no

reliable biomarkers of consumption for nutrients including vitamins and minerals (vitamin K is an exception). Yet,

nutritionists are interested in estimating the distribution of usual intake of micronutrients per unit of caloric intake.

This is denoted the nutrient density of the diet and involves estimation of the distribution of the ratio of two

non-normal random variables, one of which is observed with measurement error. We develop an approach that

combines a deconvolution kernel method (DKM) and the method of copulas to estimate the joint distribution of

two non-normal variables where one is contaminated. DKM is first used to adjust the univariate measurement

error. A Gaussian copula is then used to model the correlation structure between the two variables after error

adjustment. We carried out a small simulation study to investigate whether the two-step method we propose is

promising. At least in the context of our simulation, we found that the approach produces good results when the

correlation between the two random variables is reasonably high. Our findings are tentative, however and more

research is needed before we can recommend the methodology for use more broadly.
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1 Introduction

We consider estimation of a bivariate non-normal distribution given pairs of observations where one of the variables

is contaminated with measurement error. This problem, which falls in the general category of a deconvolution

problem, arises frequently in applications since, in practice, we often find that variables of interest are subject to

measurement error.

Our work is motivated by the need to estimate a bivariate usual intake distribution. There has been a lot of work

in this area, but research has mostly focused on the univariate case (see below for a review of some of the literature).

For practical reasons – cost and respondent burden among them – intake data are collected from individuals in a

sample of the population for only a few days per individual. Even though intake information for each individual

in the sample is limited, epidemiologists and nutritionists are typically interested in the long-run average intake,

denoted usual intake, and in particular, in the distribution of usual intakes in the population. Given an estimate

of the distribution of usual intakes, it is then possible to estimate, for example, the proportion of the population

whose intakes fall below a threshold such as the estimated average requirement (EAR). Excessive intakes, as in the

case of cholesterol and sodium, are also of interest, and the proportion of the population with high intakes of a

nutrient can also be assessed from the usual intake distribution.

One simple approach to estimate the distribution of usual intakes is to use the distribution of observed individual

mean intakes as the estimator. However, even if we were to assume that the observed intake is unbiased for usual

intake, an individual’s mean daily intake for a particular dietary component has a variance that contains some

within-individual variability. Thus, the variance of the observed means is inflated by the day-to-day variability in

daily intake. Because of this, using the distribution of the mean of a few days as an estimate of the usual intake

distribution can lead to erroneous inference regarding dietary status.

In the univariate case, adjustment for measurement error can be formulated as the problem of estimating the

distribution of a random variable that is observed with error. In 1986, the National Research Council (NRC, 1986)

proposed a simple measurement error model to describe the relation between the observed daily intake for person

i on day j, Y
ij

and the unobservable usual intake for that person, y
i

. In their formulation,

Y
ij

= y
i

+ u
ij

,
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where y
i

⇠ N(µ,�2
y

) and u
ij

⇠ N(0,�2
u

). The measurement error u
ij

is assumed to be independent of the un-

observable usual intakes y
i

and also of each other, within a person. Under the model, y
i

= E(Y
ij

|i) = E(Ȳ
i

|i),

where Ȳ
i

is the observed mean intake of the ith person calculated over r
i

daily intake observations. Further,

V ar(Ȳ
i

) = �2
y

+ �2
u

/r
i

.

The NRC suggested estimating y
i

using a best linear unbiased predictor (BLUP) and then estimating the usual

intake distribution as the distribution of those BLUPS. Since observed daily intakes Y
ij

are typically non-normal,

the NRC proposed that the model be fit after log-transforming the daily intakes. Nusser et al. [18] revisited this

problem and recognized that estimating f(y) is a deconvolution problem. They proposed an approximation to the

deconvolution estimate of f(y) that assumed that a univariate transformation of Y
ij

into the normal scale implies

that both y
i

and u
ij

are also normally distributed. In the normal scale, Nusser et al. (1996) fitted the simple

measurement error model, estimated the unobservable, normal-scale usual intakes ÿ
i

and then, using a suitable

back-transformation, obtained the estimated distribution of the y in the original scale.

While the model described above is simple, the areas in which the model can be applied are multiple and include

astronomy, biology, chemistry, economy and public health [3], [17]. Estimation of the density of a univariate non-

normal random variable with measurement error has been extensively studied. Mendelsohn and Rice (1982) [?]

presented an example of estimation of a density given observations contaminated with normal error. Stefanski(1990)

[23] considered estimation of a continuous bounded probability density when observations from the density are

contaminated by additive measurement errors having a known distribution. These studies have focused on the

univariate case. An exception is a recent paper by Zhang et al. [21] in which the authors propose a method for

estimating a highly multivariate distribution when only short-term measurements are available. Overall, however,

there is little work published for the case where the density of interest is multivariate.

We consider the problem of estimating the joint distribution of two correlated random variables where one of

the variables is observed with error. An example in nutrition is estimation of the joint distribution of usual energy

intake and usual micronutrient intake. While precise biomarkers for energy consumption are available (e.g., doubly-

labeled water, Trabulsi and Schoeller, 2001), there are no reliable biomarkers of consumption for nutrients including

vitamins and minerals (vitamin K is an exception). Yet, nutritionists are interested in estimating the distribution

of usual intake of micronutrients per unit of caloric intake. This is referred to as the nutrient density of the diet and

involves estimation of the distribution of the ratio of two non-normal random variables, one of which is observed
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with measurement error.

The main objective of this paper is to explore whether the method of copulas can be used to estimate the

densities of two non-normal random variables when one is contaminated by normal measurement error. In our

set-up, we do not observe the marginal distributions of the two variables, but have access to independent replicate

observations, at least of the contaminated variable. While the unobservable bivariate distribution is of interest, we

focus on estimation of the density of functions of the two random variables, and in particular, of the ratio of the

two random variables. In summary, we develop an approach that combines a deconvolution kernel method (DKM)

and the method of copulas to estimate the joint distribution of two non-normal variables where one is contaminated

by normal measurement error. DKM is first used to adjust the univariate measurement error. A Gaussian copula

is then used to model the correlation structure between the two variables after error adjustment.

This paper is organized as follows. In the next section we describe the model and introduce some notation.

We also discuss the methods we propose in this same section. A simulation study is presented in Section 3. We

investigate the performance of the algorithm we propose in this section, with emphasis on the accuracy with which

we can estimate the density of the ratio of the two random variables. Section 5 includes a discussion of our findings,

and gives some directions for future work.

2 Bivariate random measurements with error in one margin

Suppose that we obtain two measurements on the ith sample person on the jth measurement occasion. Let X1ij

and X2ij denote the observed values for the ith subject on the jth occasion, where i = 1, ..., n; j = 1, ..., r
i

. For

simplicity, we assume r
i

= r for all i. Suppose that X1ij is an almost noise-free measurement of the usual value x1i

but that X2ij measures x2i with non-negligible error. A simple model in this case is

2

64
X1ij

X2ij

3

75 =

2

64
x1i

x2i + ✏2ij

3

75 ,

2

64
x1i

x2i

3

75 ⇠

2

64

0

B@
µ1

µ2

1

CA ,

0

B@
�2
1 �12

�12 �2
2

1

CA

3

75 and ✏2ij ⇠ N(0,�2
✏

).
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In this model, (x1i, x2i) are assumed to be independent of ✏2ij . For a given person i, we also assume that the

measurement errors ✏2ij , ✏2ij0 are independent. We wish to estimate f(x1, x2) when we have at least one observation

for x1 and more than one independent replicate of X2i. We make no distributional assumptions about X2 but will

assume that the measurement error ✏ is normally distributed.

Let f
W

, f
X

and f
✏

denote the densities of X2ij , x2i and ✏2ij . We propose a method for estimating f(x1, x2) that

consists of the following steps:

1. We first use the independent replicates X2i1, ..., X2ir to obtain a moment estimator �̂
✏

for the measurement

error variance �
✏

. Then we have that f̂
✏

= �(0, �̂
✏

) where �(µ,�) is the normal density.

2. We then adjust for the measurement error in X2 using a kernel deconvolution method to estimate the density

of x2i, denoted f̂
X

.

3. We use a copula approach to estimate the conditional density f̂
X1ij |X2ij

.

4. Finally, we draw pairs (x1i, x2i) from their estimated joint density as follows:

(a) Simulate ✏⇤2ij ⇠ f̂
✏

and x⇤
2i ⇠ f̂

X

and compute X⇤
2ij = x⇤

2i + ✏⇤2ij , i.e. simulate observations contaminated

with error.

(b) Draw X⇤
1ij from f̂

X1ij |X2ij
with X2ij = X⇤

2ij

(c) Calculate x⇤
1i =

1
r

P
r

j=1 X
⇤
1ij

(d) Repeat a large number of times M to get pairs (x⇤
1m, x⇤

2m)
m=1,...,M .

In the next sections, we describe these steps in more detail.

2.1 Deconvolution estimator of fX2(x2

)

Let '
W

,'
X

and '
✏

denote the characteristic functions of X2ij , x2i and ✏2ij . Let f
W

, f
X

and f
✏

be probability

density functions of X2ij , x2i and ✏2ij , respectively. By the inversion formula,

f
X

(x) =
1

2⇡

Z
e�itx'

X

(t)dt =
1

2⇡

Z
e�itx

'
W

(t)

'̂
✏

(t)
dt, (1)
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where we have omitted the subscript 2 to simplify notation. A kernel estimator of '
W

(t) is given by

'̂
W

(t) =

Z
eitwf̂

W

(w)dw (2)

where f̂
W

(w) = 1
nh

P
n

j=1 K(w�Wj

h

) is the conventional kernel density estimator of f
W

and K(·) is a symmetric

probability kernel with finite variance. The resulting estimator of f
X

based on '̂
W

(t) is the deconvolution kernel

density estimator [23]

f̂
X

(x) =
1

nh

nX

i=1

L(
x�W

i

h
), (3)

where

L(z) =
1

2⇡

Z
e�itz

'
K

(t)

'̂
✏

( t

h

)
dt

is called the deconvoluting kernel and is such that '
K

is compactly supported and is the characteristic function of

the kernel K(·). The parameter h is the bandwidth parameter. The distribution estimator F̂
X

of F
X

is thus defined

as the integral of f̂
X

over (�1, x] :

F̂
X

(x) =
1

2
+

1

2⇡n

nX

j=1

Z
sin(t(x�W

j

))'
K

(ht)

t'̂
✏

(t)
dt. (4)

We chose a standard kernel function for normal errors, a second-order kernel whose characteristic function has

a compact and symmetric support (Fan, 1992) given by

K(x) =
48cos(x)

⇡x4
(1� 15

x2
)� 144sin(x)

⇡x5
(2� 5

x2
). (5)

The characteristic function of the second-order kernel is given by:

'
K

(t) = (1� t2)3I[�1,1](t). (6)

The resulting deconvolution kernel when we assume normal errors is therefore:

L1(x) =
1

⇡

Z 1

0
cos(tx)(1� t2)3e

�2t2

2h2 dt. (7)
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The unknown bandwidth parameter h is di�cult to determine from the data. There have been at least three

di↵erent major approaches proposed to estimate the bandwidth parameter. The cross-validation approach proposed

by Habbema, Hermans and Van Der Broek [12] while simple to formulate, has been shown to produce highly variable

results [1]. An alternative is what is known as ‘plug-in’ methods, of which there is a wide variety discussed in the

literature [15, 1]. The approach discussed in Delaigle and Gijbels [1] is based on an asymptotic approximation to the

mean integrated squared error (MISE), which we describe below. A third approach to estimating the bandwidth, is

also based on the MISE, but instead of relying on an asymptotic approximation of the MISE, it relies on a bootstrap

approximation to the MISE [2]. Here, we select the bandwidth h by minimizing the asymptotic approximation to

the mean integrated error, as in the ‘plug-in’ method. The (MISE) is defined by

MISE(h) = E

Z
(f̂

X

(x, h)� f̂
X

(x))2dx. (8)

Stefanski and Carrol [23] showed that an estimate of the MISE is given by:

ˆMISE(h) =
1

2⇡nh

Z |'
K

(t)|2

|'
✏

( t

h

)|2
dt+

h4

4
R(f

00

X

)

Z
x2K(x)dx, (9)

where R(f
00

X

) =
R
[f

00

X

(x)]2dx. If we were to assume that x2i is normal, R(f̂
00

X

) = 0.375�̂�5
X

⇡� 1
2 where �̂

X

=
p
�̂2
W

� �̂2
✏

, �̂2
W

is the sample variance of X2ij and �̂2
✏

= (
P

n

i=1

P
r

j=1(X2ij � x̄2i.)2)(n(r � 1))�1. The plug-in

selection of h is the value of the bandwidth that minimizes ˆMISE(h).

2.2 A copula approach to conditional density estimation

Once we have estimated the marginal densities of x1 and x2, we can use the method of copulas to approximate

their joint distribution. The history of the copula traces back to Frechet [5]. Formally, a copula is a bi-(or multi)

variable distribution function whose marginal distribution functions are uniform on the interval [0,1]. Suppose that

we have a g-dimensional random vector (Z1, Z2, ..., Zg

) with continuous marginal cumulative distribution functions

F
i

(z) = P [Z
i

 z]. If we apply the probability integral transform to each marginal, the vector

✓
U1 U2 ... U

g

◆
=

✓
F (z1) F (z2) ... F (z

g

)

◆
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has marginal distributions that are uniform. The copula of the vector Z is then defined as the joint cumulative

distribution function of the vector U . More formally,

Definition 2.1. A g-dimensional copula C : [0, 1]g �! [0, 1] is a cumulative distribution function with uniform

marginals.

Sklar [22] proved the following fundamental result:

Theorem 2.2. (Sklar1959) Consider a g-dimensional cdf H with marginals F1, ..., Fg

. There exists a copula C,

such that

H(x1, ..., xg

) = C(F1(x1), ..., Fg

(x
g

)) (10)

for all x
i

2 R̄. If F
i

is continuous for all i = 1, ..., g then C is unique; otherwise C is uniquely determined only

on RanF1 ⇥ · · ·⇥RanF
g

, where RanF
i

denotes the range of the cdf F
i

.

This theorem gives a representation of a multivariate c.d.f as a function of each univariate c.d.f. In other

words, the copula function captures the dependence structure among the components irrespective of the marginal

distributions.

We estimate the conditional density f
x1i|X2ij

using a copula. By Theorem 2.2, we have that

H(X1ij , X2ij) = C(F1(X1ij), F2(X2ij)), (11)

where F1 and F2 are marginal cumulative density functions of X1iand X2ij and H is joint cumulative density

function of X1i and X2ij . Then the joint probability density function is:

h(X1ij , X2ij) =
@2H(X1ij , X2ij)

@X1ij@X2ij
=

@2C(F1(X1ij), F2(X2ij))

@X1ij@X2ij
= f1(X1ij)f2(X2ij)c(F1(X1ij), F2(X2ij)), (12)

and the conditional distribution of x1 given x2 is given by

f
x1i|X2ij

=
h(X1ij , X2ij)

f2(X2ij)
= f1(X1ij)c(F1(X1ij), F2(X2ij)). (13)
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We used a Gaussian copula to model the correlation structure between X1ij and X2ij , so that

CGa

⇢

(F1(X1ij), F2(X2ij)) =

Z ��1(F1(X1ij))

�1

Z ��1(F2(X2ij))

�1

1

2⇡
p
1� ⇢2

exp{�s2 � 2⇢st+ t2

2(1� ⇢2)
}dsdt. (14)

The following corrected rank-based estimate was used to estimate the marginal cumulative distribution functions

of X1ij and X2ij [24]:

F̂ (x(k)) =
r(k)� 0.326

n+ 0.348
, (15)

where r(k) is the rank of the kth observation in a vector of observations x. A pseudo(partial)-likelihood for ⇢ is

(Genest et al., 1995):

l̃n(⇢) =
X

i=1,...,n;j=1,...,r

lnCGa

⇢

(F̂1(X1ij), F̂2(X2ij)). (16)

To estimate ⇢ we find the value that maximizes the equation (16):

⇢̂ = argsup
⇢

{l̃n(⇢)}. (17)

3 Simulation study

We carried out a simulation study to assess the performance of the method we propose to estimate the bivariate

density of x1i, x2i. We first generate x2 from a non-normal distribution as described below. To ensure that

the simulated observations are positive, we assume that the additive measurement error model holds after a log

transformation of the observations. We generated identically distributed x2i according to (18).

x2i ⇠ 2 ⇤ �(5, 2) + �(12). (18)

We considered three di↵erent structures for the correlation between x1i, x2i. Under the first correlation structure,

x1i and x2i are highly correlated. Under the third structure, x1i and x2i are almost uncorrelated. In the third case,

knowing the value of X2ij does not provide much information about the value of x1i. More precisely, the three
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conditional distributions from which we draw the value of x1i are

1. x1i|x2i ⇠ �2(x2i)

2. x1i|x2i ⇠ �(5, 1) +
p
x2i

3. x1i|x2i ⇠ e�(3,5) + sin(x2i).

A graphic illustration of the joint distributions of samples from the three schemes is shown in Figure 1 for a

single realization.

The simulated observations X2ij are then contaminated by either normal or t errors. Recall that the deconvo-

lution kernel estimator is based on a normal error assumption, so we wished to explore whether the approach we

propose is to robust to departures from the normality assumption for the measurement errors. The errors in the

study are generated as:

1. ✏2ij ⇠ N(0, 0.5)

2. ✏2ij ⇠ t3.

The contaminated observations are then calculated as in (19).

X2ij = x2i ⇤ e✏2ij . (19)

Finally, we varied the number of individuals and the number of independent replicates available for each individ-

ual. We considered the case where we had n = 200 individuals, each with r = 7 independent replicate observations

and the case where we had n = 350 individuals, each with r = 4 replicate observations. Overall, we considered 12

scenarios and the entire simulation study was repeated 15 times. Except where noted, all results presented below

are averaged over the 15 simulation replicates.

We proceeded as described in Section 2.1. To illustrate the performance of the deconvolution kernel estimator,

we show the estimated density curves corresponding to di↵erent sample sizes and two error distributions in Figure

2 and Figure 3. In each case, the average (over 5 simulation replicates) target curve is represented by a solid

black line. Figure 2 and Figure 3 compare, for various sample sizes, the results obtained for estimating densities

with respect to the two error distributions. The average deconvolution estimators appear to be more skewed to the
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right relative to the real values. In our study, violating the normal error assumption appears to significantly a↵ect

the performance of the kernel deconvolution estimator as suggested by the density estimators shown in Figure 3.

However, this is not an issue that we explored in depth and findings are tentative. When the measurement error

is normal, we would expect to have better deconvolution estimators when seven (rather than four) independent

replicates are available for each sample person, even though the number of individuals in the sample is half as large.

This is because the accuracy with which we can estimate the variance of the measurement error depends more

directly on the number of replicates within subject than on the number of subjects. Yet Figure 2 indicates that

there is little advantage – at least in these particular simulation scenarios – in increasing the number of replicates

per subject from four to seven.

Table 1 contains the mean, variance, and skewness coe�cient of the distributions of the true x2i, the x⇤
2i drawn

from the deconvolution estimator of f(x2) and the distribution of the contaminated sample. Note that, in all

cases, the standard deviation of the contaminated sample is larger than that of the sample from the deconvolution

estimator. This, in turn, tends to be larger than the standard deviation of the true values. This suggests that

the deconvolution estimator of f(x2) has succeeded in at least partially removing the within-subject variability in

the measurements. The mean of the contaminated values X2ij tends to be larger than the means of x2i, x
⇤
2i. This

is unexpected at first glance, given that errors are drawn from distributions with zero mean. The reason for the

di↵erence in means is that contamination is multiplicative rather than additive (see expression 19).

Because the deconvolution estimator of f(x2) appears to deteriorate significantly when the errors are drawn from

a heavy-tailed distribution such as the t3 distribution, we did not consider these cases further in the simulation

study. In the remainder, we present results for the bivariate case, but only when the measurement errors in X2

are normally distributed. As discussed earlier, the distribution of the ratio of two variables is of interest in some

practical applications. For example, estimating the population distribution of the usual intake of a nutrient in

energy consumption units requires determination of individual-level ratios, i.e the percent of all calories consumed

that are attributable to dietary fat, or the usual dietary density of vitamin C consumption per 1000 calories in

the diet. We therefore continued with the simulation study and computed the joint distribution of x1, x2 for the

case where the measurement error is normal, but the strength of the correlation between the two random variables

varies from strong, to moderate to weak and for the two sample size scenarios. We then used our estimated joint

distribution to obtain the density of the ratio x2/x1 to explore how well the estimated ratio density compares to

11



Table 1: Moments of the distributions of the target values x2i, deconvolution estimates x⇤
2i and contaminated

observations X2ij for di↵erent sample sizes and error distributions.
Mean Standard Deviation Skewness

✏2ij ⇠ N(0, 0.5), n = 200, r = 7
x2i 16.95 1.40 0.30
x⇤
2i 16.19 2.03 0.30

X2ij 19.12 3.06 0.33
✏2ij ⇠ N(0, 0.5), n = 350, r = 4

x2i 17.05 1.32 0.20
x⇤
2i 16.30 2.04 0.45

X2ij 19.27 3.17 0.40
✏2ij ⇠ t(3), n = 200, r = 7

x2i 16.85 1.35 0.39
x⇤
2i 18.35 4.00 1.22

X2ij 22.80 53.22 11.71
✏2ij ⇠ t(3), n = 350, r = 4

x2i 16.90 1.36 0.19
x⇤
2i 16.14 3.44 0.21

X2ij 21.94 20.41 8.80

the true ratio density.

Figures 4, 5 and 6 below show the true ratio density (black curve) and the two estimated densities. The red

dashed curves are obtained using a deconvolution estimate of f(x2) and a Gaussian copula estimate of the joint

distribution of x1, x2. The blue dotted curves are naive estimates of the ratio density, computed as the empirical

distribution of the observed mean ratios. In the three figures, the left panel corresponds to the case where 7

replicates are available for 200 subjects; the right panel corresponds to the case where 4 replicates are available for

350 subjects.

We note from the figures, that the estimator we propose approximates the true ratio density quite well when

the correlation between the two variables is high. The performance of the method, however, deteriorates as the

correlation decreases. Tables 2 and 3 display estimated percentiles of the distribution of the ratio under di↵erent

simulation scenarios. The mean percentiles and estimated standard deviations were computed over the 5 replicated

simulation samples. Overall, our approach performs better than the naive approach, at least when the two random

variables are highly or moderately correlated. When the correlation between x1, x2 is high, the performance of

our approach improves as we approach the upper tail of the ratio distribution; in this case, only the lower tail

percentiles of the estimated ratio distribution are significantly di↵erent from the true ratio percentiles. Even when
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the correlation between x1, x2 is only moderate or even low and the estimated percentiles are significantly di↵erent

from the true percentiles, the naive estimated distribution has percentiles that are even further away from the true

values.

Table 2: Percentiles of the ratio x2
x1

under the three correlation structures. The measurement error distribution is
N(0,0.5) and the size is 200 subjects with 7 replicates each. r̂

k

is estimated ratio; r
k

is the true ratio; ro
k

is the
observed ratio with measurement error, and k indicates the corresponding correlation structure.

Quantile r̂1 r1 ro1 r̂2 r2 ro2 r̂3 r3 ro3
1% 0.3 (0.016) 0.47 0.25 0.55 (0.027) 0.75 0.44 2.35 (0.106) 2.33 1.56
5% 0.44 (0.012) 0.6 0.38 0.81 (0.014) 1.00 0.67 3.57 (0.054) 3.4 2.59
10% 0.53 (0.010) 0.67 0.47 0.96 (0.012) 1.17 0.84 4.28 (0.057) 4.31 3.37
25% 0.7 (0.007) 0.82 0.69 1.28 (0.010) 1.48 1.22 5.88 (0.078) 6.03 5.36
50% 0.96 (0.012) 1.03 1.04 1.78 (0.017) 1.88 1.84 8.32 (0.144) 8.91 9.23
75% 1.31 (0.019) 1.32 1.6 2.5 (0.032) 2.34 2.76 12.02 (0.257) 14.93 17.14
90% 1.72 (0.026) 1.73 2.36 3.28 (0.045) 2.8 3.99 16.2 (0.310) 27.4 32.1
95% 2.05 (0.030) 1.98 2.95 3.89 (0.072) 3.11 4.91 19.5 (0.481) 38.41 47.52
99% 2.88 (0.105) 2.73 4.59 5.59 (0.290) 3.54 7.18 28.17 (1.235) 71.97 101.77

NOTE: Values in parentheses are estimated standard errors for the Monte Carlo mean percentiles.

Table 3: Percentiles of the ratio x2
x1

under three correlation structures. The measurement error distribution is
N(0,0.5) and the size is 350 subjects with 4 replicates each. r̂

k

is estimated ratio; r
k

is the true ratio; ro
k

is the
observed ratio with measurement error.

Quantile r̂1 r1 ro1 r̂2 r2 ro2 r̂3 r3 ro3
1% 0.24 (0.016) 0.48 0.25 0.48 (0.034) 0.74 0.42 2.15 (0.135) 2.32 1.47
5% 0.42 (0.009) 0.60 0.39 0.83 (0.014) 1.00 0.67 3.61 (0.067) 3.48 2.57
10% 0.51 (0.009) 0.68 0.47 0.98 (0.015) 1.16 0.84 4.39 (0.064) 4.30 3.41
25% 0.68 (0.011) 0.82 0.69 1.3 (0.017) 1.47 1.23 5.99 (0.083) 6.09 5.46
50% 0.96 (0.017) 1.03 1.05 1.81 (0.027) 1.88 1.85 8.56 (0.118) 9.15 9.66
75% 1.34 (0.022) 1.33 1.61 2.48 (0.031) 2.36 2.80 12.28 (0.167) 15.59 17.59
90% 1.80 (0.027) 1.71 2.38 3.30 (0.029) 2.81 3.98 16.84 (0.180) 27.34 32.65
95% 2.16 (0.045) 2.00 3.02 3.87 (0.043) 3.12 4.94 20.32 (0.297) 38.79 47.90
99% 3.03 (0.074) 2.91 4.78 5.16 (0.144) 3.76 7.25 29.07 (0.699) 87.75 102.93

NOTE: Values in parentheses are estimated standard errors for the Monto Carlo mean percentiles.

4 Application

In this section, we illustrate our method using a data set from the Observing Protein and Energy Nutrition(OPEN)

that was carried out by NCI. The variables of interest are energy intake measured using doubly labeled water
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(no measurement error) and protein intake collected using 24-hour recalls on two separate days. We want the

distribution of usual protein intake per1000 kcal. We separate men and women before doing the estimation.

Table 4: Percentiles of the ratio Protein

Energy

(protein intake per 1000 kcal) with and without adjusting measurement
error.

1% 5% 10% 25% 50% 75% 90% 95% 99%
Adjusted ratio (Female) 10.85 14.66 18.44 23.82 32.96 42.00 54.16 65.38 78.70
Oberved ratio (Female) 10.85 16.92 19.30 25.39 33.04 41.74 50.79 58.11 74.42
Adjusted ratio (Male) 7.61 11.68 15.46 22.42 31.67 44.37 59.44 69.09 112.88
Observed ratio (Male) 8.48 13.71 17.39 22.87 30.92 38.46 47.26 54.96 72.78

5 Discussion

We have proposed an approach to estimate the joint distribution of two non-normal variables when one is con-

taminated with normal measurement error. The approach consists of two steps. First, we use a deconvolution

method to estimate the marginal distribution of the unobservable variable that is observed with error. Next we

use a Gaussian copula to estimate the joint distribution of x1, x2 using information about the marginals. Copulas

are used to model the correlation structure among variables and requires few assumptions about the form of the

multivariate distribution to be estimated. Therefore, this approach is applicable more broadly.

Estimation of the marginal distribution of the contaminated random variable is di�cult if we wish to mini-

mize assumptions about the form of the unobservable density. Here we have assumed that the errors are normally

distributed, but it would be possible, given the independent replicates available for each person, to estimate the

distribution of the measurement error empirically. The choice of deconvoluting kernel and of the bandwidth pa-

rameter is not straightforward and here we have made choices of convenience. It may be possible to improve the

accuracy with which we estimate the marginal distribution of the contaminated random variable. On the other

hand, the fact that even choices of convenience greatly improved over the naive estimator of the density suggests

that the method we developed might be applicable in a wide range of problems.

The performance of the methods we implement is a↵ected by the degree of association between the two random

variables. When the correlation between them is high, the copula approach performs well and the distribution of

the ratio of the two variables is closely approximated by the estimated density. When the two random variables
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are weakly correlated, however, the copula fails, because there is no association to model. In this case, while the

estimated ratio density is still a better approximation to the true density that the observed empirical density, the

performance of the estimator is poor, particular in the tails of the distribution.

Before settling on the deconvolution copula methodology, we investigated an approach that uses a piecewise

normal linear approximation to estimate the bivariate density. The method was proposed by Dimitris and Efthymia

(2010) and an algorithm to implement the method was presented by Kugiumtzis and Bora-Senta (2010). We found

that this approach required tuning a large number of model parameters and that it was di�cult to account for the

contamination in one margin.
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Figure 1: Joint distribution for simulated x1i and x2i; top-left : x1i|x2i ⇠ �2(x2i); top-right: x1i|x2i ⇠ �(5, 1)+
p
x2i;

bottom: x1i|x2i ⇠ e�(3,5) + sin(x2i)
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Figure 2: Errors are ✏ ⇠ N(0, 0.5). Black solid curve is the average (over 15 reps) of the true density of x2; blue
dotted curve is the average of the naive density estimator, ignoring measurement error; red dashed curve is the
average of the deconvolution estimator. The left panel corresponds to the case where n = 200 and r = 7 and the
right panel corresponds to the case where n = 350 and r = 4.
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Figure 3: Errors are ✏ ⇠ t(3). Black solid curve is the average (over 15 reps) of the true density of x2; blue dotted
curve is the average of the naive density estimator, ignoring measurement error; red dashed curve is the average of
the deconvolution estimator. The left panel corresponds to the case where n = 200 and r = 7 and the right panel
corresponds to the case where n = 350 and r = 4.
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Figure 4: Density of the ratio x2/x1 with x1i|x2i ⇠ �2(x2i). Left panel corresponds to n = 200 subjects with r = 7
independent replicates each; right panel corresponds to n = 350 subjects with r = 4 replicates. The black solid
curve is the true density; the blue dotted curve is the density of the observed ratio (ignoring measurement error);
the red dashed curve is obtained using the deconvolution estimate of f(x2).
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Figure 5: Density of the ratio x2/x1 with x1i|x2i ⇠ �(5, 1)+
p
x2i. Left panel corresponds to n = 200 subjects with

r = 7 independent replicates each; right panel corresponds to n = 350 subjects with r = 4 replicates. The black
solid curve is the true density; the blue dotted curve is the density of the observed ratio (ignoring measurement
error); the red dashed curve is obtained using the deconvolution estimate of f(x2).
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Figure 6: Density of the ratio x2/x1 with x1i|x2i ⇠ e�(3,5) + sin(x2i). . Left panel corresponds to n = 200 subjects
with r = 7 independent replicates each; right panel corresponds to n = 350 subjects with r = 4 replicates. The black
solid curve is the true density; the blue dotted curve is the density of the observed ratio (ignoring measurement
error); the red dashed curve is obtained using the deconvolution estimate of f(x2).
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Figure 7: Density of the ratio Protein

Energy

(protein intake per 1000 kcal) with (black solid line) and without (red solid

line) adjusting measurement error
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