R for Marketing Research and Analytics: Motivation & Brief Tour

Chris Chapman, Google Elea McDonnell Feit, Drexel University What Chris does: "Quantitative User Experience Research"

What Elea does

You may also like to know that Elea is a Bayesian and is working on a second book titled "Business Experiments."

Observations on the state of quant methods in marketing

Stats depth

Essential for analytics, predictive modeling, experimentation

Stats breadth

Needed for customer insight, rapid feedback, strategy impact

Implications

- 1. Too many models and applications to expect expertise in any one analyst
- 2. Analysts often recreate the wheel because of siloed knowledge

To date, there have been few references describing a breadth of marketing methods for general researchers and statisticians

The obligatory book photo

Chapter Key topics

General

1-3 Basic R

7

8

9

10

11

12

13

D Springer

- 4-6 Descriptives and ANOVA
 - Linear models

Focused on marketing

- EFA, PCA, and perceptual mapping
- Hierarchical linear models
- CFA and structural equation models
- Segmentation (clustering and classification)
- Association rules (market basket analysis)
- Choice models (conjoint analysis)

Why those methods?

8

9

D Springer

Chapter Key topics

General

- 1-3 Basic R
- 4-6 Descriptives and ANOVA
- 7 Linear models

Method

- EFA, PCA, MDS
- HLM
- 10 CFA, SEM
- 11 Cluster/classify
- 12 Association rules
- 13 Choice models

Common marketing application

Assess brand/product positioning for strategy Individual- or subgroup- level assessment Survey validation; Estimates given many IVs & DVs Market & customer insight, profiling, prediction Retail optimization, consumer targeting Feature prioritization, pricing, product portfolio design

Topics we'll describe in a bit more depth

Chapter Key topics

General

- 1-3 Basic R
- 4-6 Descriptives and ANOVA
- 7 Linear models

Method8EFA, PCA, MDS9HLM10CFA, SEM11Cluster/classify12Association rules13Choice models

Common marketing application

Assess brand/product positioning for strategy Individual- or subgroup- level assessment

Survey validation; Estimates given many IVs & DVs

Market & customer insight, profiling, prediction Retail optimization, consumer targeting

Feature prioritization, pricing, product portfolio design

g and

Quick SEM in R

SEM: Why?

Consider survey asking about satisfaction

Customers are asked scaled items for:

Sat with the product Sat with the salesperson Likelihood to recommend product Likelihood to recommend salesperson

... and the business wants to know:

How is Sat related to Recommend?

Problem: the variables are all highly correlated

Consider survey asking about satisfaction

Customers are asked scaled items for: Sat with the product Sat with the salesperson

Likelihood to recommend product Likelihood to recommend salesperson

... and the business wants to know:

How is Sat related to Recommend?

One latent model we might wish to estimate

Sat and Recommend are *latent constructs* with multiple observed variables

There are various ways to deal with collinearity and latent variables

SEM addresses the business question, estimating how *SAT* affects *REC* directly

R code: Load the data and set up model (1)

load data

> satData <- read.csv("<u>http://goo.gl/UDv12g</u>")

> head(satData)

	iProdSAT	iSalesSAT	Segment	iProdREC	iSalesREC
1	6	2	1	4	3
2	4	5	3	4	4
3	5	3	4	5	4

R code: Load the data and set up model (2)

load data

> satData <- read.csv("http://goo.gl/UDv12g")</pre>

> head(satData)

	iProdSAT	iSalesSAT	Segment	iProdREC	iSalesREC
1	6	2	1	4	3
2	4	5	3	4	4
3	5	3	4	5	4

#	set up manifest and	LATENT variables
>	satModel <- "SAT =~	iProdSAT + iSalesSAT
+	REC =~	iProdREC + iSalesREC
+	REC ~	SAT "

Estimate the SEM (1)

> satModel <- "SAT =~ iProdSAT + iSalesSAT + REC =~ iProdREC + iSalesREC + REC ~ SAT "

estimate the model

- > library(lavaan)
- > sat.fit <- cfa(satModel, data=satData)</pre>

Estimate the SEM (2)

> satModel <- "SAT =~ iProdSAT + iSalesSAT + REC =~ iProdREC + iSalesREC + REC ~ SAT "

iProdSAT SAT SAT REC iSalesSAT iSalesREC

estimate the model

> library(lavaan)
> sat.fit <- cfa(satModel, data=satData)</pre>

inspect it > summary(sat.fit, fit.m=TRUE) User model versus baseline model: Comparative Fit Index (CFI) 0.995 ... Regressions: REC ~ SAT 0.758 0.131 5.804 0.000

Plot it

plot it

- > library(semPlot)
- > semPaths(sat.fit, what="est",

+ edge.label.cex=1)

Or a cleaner plot with DiagrammeR

library(DiagrammeR)

```
grViz("
      digraph SEM {
        graph [layout = neato, overlap = true,
                                                        iProdSAT
                                                                                                   iProdREC
               outputorder = edgesfirst]
        node [shape = rectangle]
                                                                                              1.00
                                                              1.00
        a [pos='-2, 1!', label='iProdSAT']
        b [pos='-2,-1!', label='iSalesSAT']
                                                                             0.76
        c [pos='-1, 0!', label='SAT', shape=circle]
                                                                                          REC
                                                                     SAT
        d [pos=' 1, 0!', label='REC', shape=circle]
                                                              1.07
        e [pos=' 2, 1!', label='iProdREC']
        f [pos=' 2,-1!', label='iSalesREC']
                                                                                              0.90
        c->a [label='1.00']
                                                       iSalesSAT
                                                                                                   iSalesREC
        c->b [label='1.07']
        c->d [label='0.76']
        d->e [label='1.00']
        d->f [label='0.90']
```

} ")

R code: complete SEM

```
# estimate the model
library(lavaan)
sat.fit <- cfa(satModel, data=satData)
# inspect it</pre>
```

```
summary(sat.fit, fit.m=TRUE)
```

```
# plot it
library(semPlot)
semPaths(sat.fit, what="est")
```

SEM: Did we answer the question?

Customers are asked scaled items for: Sat with the product Sat with the salesperson Likelihood to recommend product Likelihood to recommend salesperson

... and the business wants to know:

How is Satisfaction related to Recommending? ⇒ Recommend goes up 0.76 units for each unit of latent Satisfaction ⇒ This is stronger than any single effect in the raw, bivariate correlations

Quick Choice Models in R

Choice Modeling: Why?

Traditional scaled responses rarely give good answers

Typical survey approach:

How important is each auto feature for you? (check an answer for each feature)

	Not import	ant				Ve	ry import	tant
Seating capacity	1	2	3	4	5	6	7	
Cargo room	1	2	3	4	5	6	7	
Engine type	1	2	3	4	5	6	7	
Price	1	2	3	4	5	6	7	

Mean consumer ratings of auto attributes (fictional)

Unclear interpretation ... "How many people would buy our product if we do X or Y?"

Better is to give respondents a more natural task

sume all three minivar	is are identical o	other than the fea	atures listed belo
	Option 1	Option 2	Option 3
	6 passengers	8 passengers	6 passengers
	2 ft. cargo area	3 ft. cargo area	3 ft. cargo area
	gas engine	hybrid engine	gas engine
	\$35,000	\$30,000	\$30,000
prefer (check one):			

Consumers give meaningful answers, and we can model choice likelihood by feature

The model

Multinomial logit model, aka conditional logit model

Estimates the part-worth value (utility) for each feature, for each respondent

 η_{ij}

Utility of respondent *i* for product *j*

Total utility of **all products** under consideration (set *k*)

Likelihood to choose $j(\pi_{ij})$ is the ratio of exponentiated utility share for product j vs. **all products**

 $\sum \exp\{\eta_{ik}\}$

$$\pi_{ij} = \frac{\exp\{\eta_{ij}\}}{\sum \exp\{\eta_{ik}\}}$$

formulas adapted from G. Rodriguez, http://data.princeton.edu/wws509/notes/c6s3.html

Choice data

> cbc.df <- read.csv("http://goo.gl/5xQObB",
+ colClasses = c(seat = "fac</pre>

```
colClasses = c(seat = "factor", price = "factor"))
```

			C	ption 1	Opti	on 2	Optio	on 3		
			6 pa	assengers	8 pass	engers	6 passe	engers		
			2 ft.	cargo area	3 ft. car	go area	3 ft. carç	go area		
			ga	is engine	hybrid	engine	gas er	ngine		
			\$	35,000	\$30	,000	\$30,	000	For Question 1, Respondent	1
>	head(cbc	c.df)					V	1	saw 3 products, and chose #	3
	resp.id	ques	alt	carpool	seat	cargo	eng	price	choice	
1	1	1	1	yes	6	2ft	gas	35	0	
2	1	1	2	yes	8	3ft	hyb	30	0	
3	1	1	3	yes	6	3ft	gas	30	1	
4	1	2	1	yes	6	2ft	gas	30	0	

Estimation using mlogit

> library(mlogit)
> cbc.mlogit <- mlogit.data(data=cbc.df, choice="choice", shape="long",
+ varying=3:6, alt.levels=paste("pos",1:3),
+ id.var="resp.id")</pre>

> m1 <- mlogit(choice ~ 0 + seat + cargo + eng + price, data = cbc.mlogit)
> summary(m1)

	Estimate	Std. Error	t-value	Pr(> t)	
seat7	-0.535280	0.062360	-8.5837	< 2.2e-16	* * *
seat8	-0.305840	0.061129	-5.0032	5.638e-07	* * *
cargo3ft	0.477449	0.050888	9.3824	< 2.2e-16	* * *
enggas	1.530762	0.067456	22.6926	< 2.2e-16	* * *
enghyb	0.719479	0.065529	10.9796	< 2.2e-16	* * *
price35	-0.913656	0.060601	-15.0765	< 2.2e-16	* * *
price40	-1.725851	0.069631	-24.7856	< 2.2e-16	* * *

The coefs are the aggregate (upper-level) part worth utilities for MNL

(mlogit is one method. We more typically use a hierarchical Bayes model and estimate with bayesm)

Predicting share preference

> predict.mnl(m1, new.data)

	share	seat	cargo	eng	price
8	0.44643895	7	2ft	hyb	30
1	0.16497955	6	2ft	gas	30
3	0.12150814	8	2ft	gas	30
41	0.02771959	7	3ft	gas	40
49	0.06030713	6	2ft	elec	40
26	0.17904663	7	2ft	hyb	35

Many respondents prefer "**auto 8**" ... but depending on what is available in market, autos **1**, **3**, or **26** could be good alternatives to produce

A next step could be a hierarchical (mixed) model to examine individual differences and correlates

Use R I
Chris Chapman Elea McDonnell Feit
R for Marketing Research and Analytics
Research and Analytics

Chapter Key topics

General

1-3 Basic R

7

8

9

10

11

12

13

D Springer

- 4-6 Descriptives and ANOVA
 - Linear models

Focused on marketing

- EFA, PCA, and perceptual mapping
- Hierarchical linear models
- CFA and structural equation models
- Segmentation (clustering and classification)
- Association rules (market basket analysis)
 - Choice models (conjoint analysis)

Contacts

 Book site
 Code and data
 http://r-marketing.r-forge.r-project.org

 Also classroom slides!

TwitterChris Chapman@cnchapmanElea McDonnell Feit@eleafeit

EmailChris Chapmancnchapman+r@gmail.comElea McDonnell Feitemf75@drexel.edu

⇐ For Instructors

Thank you!