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Black Box

Causality

• In the applications of statistics, many central questions are 
related to causality rather than simply association.
• Sociology: Does divorce affect children’s education?

• Health: Is a new drug effective against a disease? 

• Economy: Does a job training program improve participants’ earnings?

• Business: Does a sales reward program boost a company’s profits?

• People care about not only the causal effect itself, but also 
how and why an intervention affects the outcome.

OutcomeTreatment
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What Is Mediation?

• It uncovers the black box.

• Baron and Kenny (1986): it represents the generative mechanism 
through which the focal independent variable (treatment) is able to 
influence the dependent variable of interest (outcome).

• It decomposes the total treatment effect into an indirect effect 
transmitted through the hypothesized mediator and a direct effect 
representing the contribution of other unspecified pathways.

Mediator

OutcomeTreatment
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Example

• Indirect Effect: The improvement in child vocabulary attributable to 
the SES-induced difference in maternal speech.

• Direct Effect: The impact of SES on child vocabulary without 
changing maternal speech.

Maternal Speech

(Mediator: M)

Child Vocabulary

(Outcome: Y)

SES

(Treatment: T)

4



Conventional Estimation Method

𝑌 = 𝑑0 + 𝑐𝑇 + 𝑒0

𝑀 = 𝑑1 + 𝑎𝑇 + 𝑒1

𝑌 = 𝑑2 + 𝑐′𝑇 + 𝑏𝑀 + 𝑒2

(Wright, 1934; Baron and Kenny, 1986; Judd and Kenny, 1981)

• Total treatment effect: 𝑐
• Direct Effect: 𝑐′
• Indirect Effect: 𝑎𝑏 or 𝑐 − 𝑐′

• Significance test: Sobel test (Sobel, 1982); Bootstrapping 
(Bollen & Stine, 1990; Shrout & Bolger, 2002); Monte Carlo 
Method (MacKinnon, Lockwood, and Williams, 2004)

Maternal Speech

(Mediator: M)

Child 

Vocabulary

(Outcome: Y)

SES

(Treatment: T)

a

c’

b

𝑒1

𝑒2
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Limitations

• The path coefficients represent the causal effects of interest only when

• the functional form of each of the models is correctly specified

• no confounding of the T-Y relation (no covariates associated with both T and Y)

• no confounding of the T-M relation

• no confounding of the M-Y relation (Either pre-treatment or post-treatment)

• no interaction exists between T and M affecting Y. However, this typically 
overlooks the fact that a treatment may generate an impact on the outcome 
through not only changing the mediator value but also changing the mediator-
outcome relationship (Judd & Kenny, 1981).

Maternal Speech

(Mediator: M)

Child 

Vocabulary

(Outcome: Y)

SES

(Treatment: T)

a

c’

b
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Potential Outcomes 
Framework
Rubin (1978, 1986)

Book recommendation: Imbens and Rubin (2015)
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Movie: It’s a Wonderful Life
Example Source: Imbens and Rubin (2015)
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Potential Outcomes Framework

Observed Counterfactual
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Definition of Causal Effects

ID Treatment Potential outcomes Causal effect

i 𝑇𝑖 𝑌𝑖 1 𝑌𝑖 0 𝑌𝑖 1 – 𝑌𝑖 0

Individual 𝑖’s potential outcome under 𝑇 = 1: 𝑌𝑖(1)

Individual 𝑖’s potential outcome under 𝑇 = 0: 𝑌𝑖 (0)

Treatment effect for individual 𝑖: 𝑌𝑖 1 − 𝑌𝑖(0)

Population average treatment effect: 𝛿 ≜ 𝐸[𝑌 1 ] − 𝐸[𝑌 0 ]

14

1 16 12 4

True averages E[Y(1)] = 15 E[Y(0)] = 8 𝛿 = 7
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SUTVA
(Stable Unit Treatment Value Assumption)

• No Interference

• The potential outcomes for any unit do not vary with the 
treatments assigned to other units.

• No Hidden Variations of Treatments

• For each unit, there are no different forms or versions of 
each treatment level, which lead to different potential 
outcomes.
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Identification of Causal Effects

• Identification relates counterfactual quantities to observable population data. 
In a randomized design, ignorability assumption holds:

Under 𝑌𝑖 𝑡 ⫫ 𝑇𝑖 for 𝑡 = 0,1, 𝐸 𝑌 𝑡 = 𝐸 𝑌 𝑡 𝑇 = 𝑡 . Hence

𝛿 = 𝐸 𝑌 𝑇 = 1 − 𝐸 𝑌 𝑇 = 0

ID Treatment Potential outcomes Causal effect

i 𝑇𝑖 𝑌𝑖 1 𝑌𝑖 0 𝑌𝑖 1 – 𝑌𝑖 0

1 1 16 ? ?

2 1 14 ? ?

3 1 15 ? ?

4 0 ? 10 ?

5 0 ? 6 ?

Observed averages 𝐸 𝑌 𝑇 = 1 = 15 𝐸 𝑌 𝑇 = 0 = 8 𝐸 𝑌 𝑇 = 1 − 𝐸 𝑌 𝑇 = 0 = 7
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• In observational studies, we are able to identify the causal effect 

under strong ignorability assumption:

𝑌𝑖 𝑡 ⫫ 𝑇𝑖|𝐗𝑖 = 𝐱

where 0 < P 𝑇𝑖 = 1 𝐗𝑖 = 𝐱 < 1

• Population average treatment effect can be identified by

𝛿 = 𝐸{𝐸 𝑌 𝑇 = 1, 𝐗 } − 𝐸{𝐸 𝑌 𝑇 = 0, 𝐗 }

Identification of Causal Effects

17



Estimation of Causal Effects

• Propensity-score based methods (Rosenbaum and Rubin, 1983):

• Matching 

• Subclassification

• Covariance adjustment

• Inverse weighting

• Sensitivity Analysis (Rosenbaum, 1986)

• The goal is to quantify the degree to which the key identification 
assumption must be violated for a researcher’s original conclusion to be 
reversed.

• Software list (including R packages) on Prof. Elizabeth Stuart's webpage: 
http://www.biostat.jhsph.edu/~estuart/propensityscoresoftware.html
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Causal Mediation Analysis
Book recommendation: Hong (2015); VanderWeele (2015)
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Research Question I
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• How much is the average SES impact on child vocabulary?

Child Vocabulary

(Outcome: Y)

SES

(Treatment: T)



Research Question II
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• How would the SES-induced change in maternal speech exert an impact 
on child vocabulary?

Maternal Speech

(Mediator: M)

Child Vocabulary

(Outcome: Y)

SES

(Treatment: T)



Definition (Pearl, 2001)
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High SES
𝑇𝑖 = 1

Low SES
𝑇𝑖 = 0

Maternal speech if SES is high

Maternal speech if SES low 

𝑀𝑖(1)

𝑀𝑖(0)

Population Average Natural Indirect Effect: 𝐸 𝑌 1,𝑀 1 − 𝐸[𝑌 1,𝑀 0 ]

𝑌𝑖 1,𝑀𝑖 1

𝑌𝑖 1,𝑀𝑖 0 𝑌𝑖 0,𝑀𝑖 0

𝑌𝑖 𝟏,𝑀𝑖 𝟏

𝑌𝑖 𝟏,𝑀𝑖 𝟎

Maternal Speech

(Mediator: M)

Child Vocabulary

(Outcome: Y)

SES

(Treatment: T)



Research Question III
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Maternal Speech

(Mediator: M)

Child Vocabulary

(Outcome: Y)

SES

(Treatment: T)

• How much is the average causal effect of SES on child vocabulary 
without changing maternal speech?



Definition (Pearl, 2001)
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High SES
𝑇𝑖 = 1

Low SES
𝑇𝑖 = 0

Maternal speech if SES is high

Maternal speech if SES is high

𝑌𝑖 1,𝑀𝑖 1

𝑌𝑖 1,𝑀𝑖 0 𝑌𝑖 0,𝑀𝑖 0

𝑀𝑖(1)

𝑀𝑖(0)

Population Average Natural Direct Effect: 𝐸 𝑌 1,𝑀 0 − 𝐸[𝑌 0,𝑀 0 ]

𝑌𝑖 𝟏,𝑀𝑖 𝟎 𝑌𝑖 𝟎,𝑀𝑖 𝟎

Maternal Speech

(Mediator: M)

Child Vocabulary

(Outcome: Y)

SES

(Treatment: T)



Alternative Definitions (Pearl, 2001)

• Manipulations

• Controlled direct effect: 𝐸[𝑌 𝑡,𝑚 ] − 𝐸[𝑌 𝑡,𝑚′ ]

• Causal effect of directly manipulating the mediator under T = t

• Natural Mechanisms 

• Natural Indirect effect: 𝐸 𝑌 1,𝑀 1 − 𝐸[𝑌 1,𝑀 0 ]

• Counterfactuals about treatment-induced mediator values

• The following discussions will be focused on this definition.
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Identification of Causal Effects

• We face an “identification problem” since we don’t observe 𝑌𝑖 1,𝑀𝑖 0

• Sequential Ignorability (Imai et al., 2010a, 2010b)

{𝑌𝑖 𝑡
′, 𝑚 ,𝑀𝑖(𝑡)} ⫫ 𝑇𝑖|𝐗𝑖 = 𝐱

𝑌𝑖 𝑡′,𝑚 ⫫𝑀𝑖(𝑡)|𝑇𝑖 = 𝑡, 𝐗𝑖 = 𝐱, for 𝑡′, 𝑡 = 0,1

where 0 < Pr 𝑇𝑖 = 𝑡 𝐗𝑖 = 𝐱 < 1, 0 < Pr 𝑀𝑖(𝑡) = 𝑚 𝑇𝑖 = 𝑡, 𝐗𝑖 = 𝐱 < 1

• Within levels of pretreatment confounders, the treatment is ignorable.

• Within levels of pretreatment confounders, the mediator is ignorable given 

the observed treatment. 
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Existing Analytic Methods

• Instrumental Variable Method (Angrist, Imbens and Rubin, 1996)

• Exclusion restriction: a constant zero direct effect

• Assumes no T-by-M interaction 

• Marginal Structural Model

• For controlled direct effect: Robins, Hernan, and Brumback (2000)

• For natural direct and indirect effects: VanderWeele (2009)

• Assumes no T-by-M interaction

• Modified Regression Approach (Valeri & VanderWeele, 2013)

𝑀 = 𝑑1 + 𝑎𝑇 + 𝛽1𝑿+ 𝑒1

𝑌 = 𝑑2 + 𝑐′𝑇 + 𝑏𝑀 + 𝑑𝑇𝑀 + 𝛽2𝑿 + 𝑒2

• Resampling Method

• Weighting Method
27



Resampling Method (Imai et al., 2010a, 2010b)

• Algorithm 1 (Parametric)
• Step 1: Fit models for the observed outcome and mediator variables. 

• Step 2: Simulate model parameters from their sampling distribution. 

• Step 3: Repeat the following three steps for each draw of model parameters: 

• 1. Simulate the potential values of the mediator. 

• 2. Simulate potential outcomes given the simulated values of the mediator. 

• 3. Compute quantities of interest (NDE, NIE, or average total effect). 

• Step 4: Compute summary statistics, such as point estimates (average) and 
confidence intervals.

• Sensitivity analysis

• Algorithm 2 (Nonparametric/Semiparametric) 
• Combine Algorithm 1 with bootstrap

• R package: “mediation”
• http://imai.princeton.edu/software/mediation.html

• http://web.mit.edu/teppei/www/research/mediationR.pdf 28
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Weighting Method

High SES
𝑇𝑖 = 1

Low SES
𝑇𝑖 = 0

Maternal speech is SES is high

Maternal speech is SES is high

𝑀𝑖(1)

𝑀𝑖(0)

𝐸[𝑌|𝑇 = 1]

𝐸[𝑾𝑌|𝑇 = 𝟏] 𝐸[𝑌|𝑇 = 0]

𝑾 =
Pr(𝑀 = 𝑚|𝑇 = 𝟎, 𝑿 = 𝒙)

Pr(𝑀 = 𝑚|𝑇 = 𝟏, 𝑿 = 𝒙)

𝐸[𝑌(1,𝑀 1 )]

𝐸[𝑌(𝟏,𝑀 𝟎 )] 𝐸[𝑌(0,𝑀 0 )]

=
= =

Hong (2010, 2015); Hong et al. (2011, 2015); Hong and Nomi, 2012; Huber (2014); Lange 
et al. (2012); Lange et al. (2014); Tchetgen Tchetgen and Shpitser (2012); Tchetgen
Tchetgen (2013)

Software “RMPW” could be downloaded from: hlmsoft.net/ghong
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Thank you!
Contact: xuqin@uchicago.edu
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